About the Project
28 Mathieu Functions and Hill’s EquationMathieu Functions of Integer Order

§28.4 Fourier Series

Contents
  1. §28.4(i) Definitions
  2. §28.4(ii) Recurrence Relations
  3. §28.4(iii) Normalization
  4. §28.4(iv) Case q=0
  5. §28.4(v) Change of Sign of q
  6. §28.4(vi) Behavior for Small q
  7. §28.4(vii) Asymptotic Forms for Large m

§28.4(i) Definitions

The Fourier series of the periodic Mathieu functions converge absolutely and uniformly on all compact sets in the z-plane. For n=0,1,2,3,,

28.4.1 ce2n(z,q) =m=0A2m2n(q)cos2mz,
28.4.2 ce2n+1(z,q) =m=0A2m+12n+1(q)cos(2m+1)z,
28.4.3 se2n+1(z,q) =m=0B2m+12n+1(q)sin(2m+1)z,
28.4.4 se2n+2(z,q) =m=0B2m+22n+2(q)sin(2m+2)z.

§28.4(ii) Recurrence Relations

28.4.5 aA0qA2 =0,
(a4)A2q(2A0+A4) =0,
(a4m2)A2mq(A2m2+A2m+2) =0,
m=2,3,4,, a=a2n(q), A2m=A2m2n(q).
28.4.6 (a1q)A1qA3 =0,
(a(2m+1)2)A2m+1q(A2m1+A2m+3) =0,
m=1,2,3,, a=a2n+1(q), A2m+1=A2m+12n+1(q).
28.4.7 (a1+q)B1qB3 =0,
(a(2m+1)2)B2m+1q(B2m1+B2m+3) =0,
m=1,2,3,, a=b2n+1(q), B2m+1=B2m+12n+1(q).
28.4.8 (a4)B2qB4 =0,
(a4m2)B2mq(B2m2+B2m+2) =0,
m=2,3,4,, a=b2n+2(q), B2m+2=B2m+22n+2(q).

§28.4(iii) Normalization

28.4.9 2(A02n(q))2+m=1(A2m2n(q))2=1,
28.4.10 m=0(A2m+12n+1(q))2 =1,
28.4.11 m=0(B2m+12n+1(q))2 =1,
28.4.12 m=0(B2m+22n+2(q))2 =1.

Ambiguities in sign are resolved by (28.4.13)–(28.4.16) when q=0, and by continuity for the other values of q.

§28.4(iv) Case q=0

28.4.13 A00(0) =1/2,A2n2n(0)=1,
n>0,
A2m2n(0) =0,
nm,
28.4.14 A2n+12n+1(0) =1,
A2m+12n+1(0) =0,
nm,
28.4.15 B2n+12n+1(0) =1,
B2m+12n+1(0) =0,
nm,
28.4.16 B2n+22n+2(0) =1,
B2m+22n+2(0) =0,
nm.

§28.4(v) Change of Sign of q

28.4.17 A2m2n(q) =(1)nmA2m2n(q),
28.4.18 B2m+22n+2(q) =(1)nmB2m+22n+2(q),
28.4.19 A2m+12n+1(q) =(1)nmB2m+12n+1(q),
28.4.20 B2m+12n+1(q) =(1)nmA2m+12n+1(q).

§28.4(vi) Behavior for Small q

For fixed s=1,2,3, and fixed m=1,2,3,,

28.4.21 A2s0(q)=((1)s2(s!)2(q4)s+O(qs+2))A00(q),
28.4.22 Am+2sm(q)Bm+2sm(q)}=((1)sm!s!(m+s)!(q4)s+O(qs+1)){Amm(q),Bmm(q),
28.4.23 Am2sm(q)Bm2sm(q)}=((ms1)!s!(m1)!(q4)s+O(qs+1)){Amm(q),Bmm(q).

For further terms and expansions see Meixner and Schäfke (1954, p. 122) and McLachlan (1947, §3.33).

§28.4(vii) Asymptotic Forms for Large m

As m, with fixed q (0) and fixed n,

28.4.24 A2m2n(q)A02n(q) =(1)m(m!)2(q4)mπ(1+O(m1))wII(12π;a2n(q),q),
28.4.25 A2m+12n+1(q)A12n+1(q) =(1)m+1((12)m+1)2(q4)m+12(1+O(m1))wII(12π;a2n+1(q),q),
28.4.26 B2m+12n+1(q)B12n+1(q) =(1)m((12)m+1)2(q4)m+12(1+O(m1))wI(12π;b2n+1(q),q),
28.4.27 B2m2n+2(q)B22n+2(q) =(1)m(m!)2(q4)mqπ(1+O(m1))wI(12π;b2n+2(q),q).

For the basic solutions wI and wII see §28.2(ii).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy