About the Project
19 Elliptic IntegralsLegendre’s Integrals

§19.4 Derivatives and Differential Equations

Contents
  1. §19.4(i) Derivatives
  2. §19.4(ii) Differential Equations

§19.4(i) Derivatives

19.4.1 dK(k)dk =E(k)k2K(k)kk2,
d(E(k)k2K(k))dk =kK(k),
19.4.2 dE(k)dk =E(k)K(k)k,
d(E(k)K(k))dk =kE(k)k2,
19.4.3 d2E(k)dk2=1kdK(k)dk=k2K(k)E(k)k2k2,
19.4.4 Π(α2,k)k=kk2(k2α2)(E(k)k2Π(α2,k)).
19.4.5 F(ϕ,k)k=E(ϕ,k)k2F(ϕ,k)kk2ksinϕcosϕk21k2sin2ϕ,
19.4.6 E(ϕ,k)k=E(ϕ,k)F(ϕ,k)k,
19.4.7 Π(ϕ,α2,k)k=kk2(k2α2)(E(ϕ,k)k2Π(ϕ,α2,k)k2sinϕcosϕ1k2sin2ϕ).

§19.4(ii) Differential Equations

Let Dk=/k. Then

19.4.8 (kk2Dk2+(13k2)Dkk)F(ϕ,k)=ksinϕcosϕ(1k2sin2ϕ)3/2,
19.4.9 (kk2Dk2+k2Dk+k)E(ϕ,k)=ksinϕcosϕ1k2sin2ϕ.

If ϕ=π/2, then these two equations become hypergeometric differential equations (15.10.1) for K(k) and E(k). An analogous differential equation of third order for Π(ϕ,α2,k) is given in Byrd and Friedman (1971, 118.03).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy