About the Project
21 Multidimensional Theta FunctionsProperties

§21.6 Products

Contents
  1. §21.6(i) Riemann Identity
  2. §21.6(ii) Addition Formulas

§21.6(i) Riemann Identity

Let 𝐓=[Tjk] be an arbitrary h×h orthogonal matrix (that is, 𝐓𝐓T=𝐈) with rational elements. Also, let 𝐙 be an arbitrary g×h matrix. Define

21.6.1 𝒦=g×h𝐓/(g×h𝐓g×h),

that is, 𝒦 is the set of all g×h matrices that are obtained by premultiplying 𝐓 by any g×h matrix with integer elements; two such matrices in 𝒦 are considered equivalent if their difference is a matrix with integer elements. Also, let

21.6.2 𝒟=|𝐓Th/(𝐓Thh)|,

that is, 𝒟 is the number of elements in the set containing all h-dimensional vectors obtained by multiplying 𝐓T on the right by a vector with integer elements. Two such vectors are considered equivalent if their difference is a vector with integer elements. Then

21.6.3 j=1hθ(k=1hTjk𝐳k|𝛀)=1𝒟g𝐀𝒦𝐁𝒦e2πitr[12𝐀T𝛀𝐀+𝐀T[𝐙+𝐁]]j=1hθ(𝐳j+𝛀𝐚j+𝐛j|𝛀),

where 𝐳j, 𝐚j, 𝐛j denote respectively the jth columns of 𝐙, 𝐀, 𝐁. This is the Riemann identity. On using theta functions with characteristics, it becomes

21.6.4 j=1hθ[k=1hTjk𝐜kk=1hTjk𝐝k](k=1hTjk𝐳k|𝛀)=1𝒟g𝐀𝒦𝐁𝒦e2πij=1h𝐛j𝐜jj=1hθ[𝐚j+𝐜j𝐛j+𝐝j](𝐳j|𝛀),

where 𝐜j and 𝐝j are arbitrary h-dimensional vectors. Many identities involving products of theta functions can be established using these formulas.

Example

Let h=4 and

21.6.5 𝐓=12[1111111111111111].

Then

21.6.6 θ(𝐱+𝐲+𝐮+𝐯2|𝛀)θ(𝐱+𝐲𝐮𝐯2|𝛀)θ(𝐱𝐲+𝐮𝐯2|𝛀)θ(𝐱𝐲𝐮+𝐯2|𝛀)=12g𝜶12g/g𝜷12g/ge2πi(2𝜶𝛀𝜶+𝜶[𝐱+𝐲+𝐮+𝐯])×θ(𝐱+𝛀𝜶+𝜷|𝛀)θ(𝐲+𝛀𝜶+𝜷|𝛀)×θ(𝐮+𝛀𝜶+𝜷|𝛀)θ(𝐯+𝛀𝜶+𝜷|𝛀),

and

21.6.7 θ[12[𝐜1+𝐜2+𝐜3+𝐜4]12[𝐝1+𝐝2+𝐝3+𝐝4]](𝐱+𝐲+𝐮+𝐯2|𝛀)θ[12[𝐜1+𝐜2𝐜3𝐜4]12[𝐝1+𝐝2𝐝3𝐝4]](𝐱+𝐲𝐮𝐯2|𝛀)×θ[12[𝐜1𝐜2+𝐜3𝐜4]12[𝐝1𝐝2+𝐝3𝐝4]](𝐱𝐲+𝐮𝐯2|𝛀)θ[12[𝐜1𝐜2𝐜3+𝐜4]12[𝐝1𝐝2𝐝3+𝐝4]](𝐱𝐲𝐮+𝐯2|𝛀)=12g𝜶12g/g𝜷12g/ge2πi𝜷[𝐜1+𝐜2+𝐜3+𝐜4]θ[𝐜1+𝜶𝐝1+𝜷](𝐱|𝛀)×θ[𝐜2+𝜶𝐝2+𝜷](𝐲|𝛀)θ[𝐜3+𝜶𝐝3+𝜷](𝐮|𝛀)θ[𝐜4+𝜶𝐝4+𝜷](𝐯|𝛀).

§21.6(ii) Addition Formulas

Let 𝜶, 𝜷, 𝜸, 𝜹g. Then

21.6.8 θ[𝜶𝜸](𝐳1|𝛀)θ[𝜷𝜹](𝐳2|𝛀)=𝝂g/(2g)θ[12[𝜶+𝜷+𝝂]𝜸+𝜹](𝐳1+𝐳2|2𝛀)θ[12[𝜶𝜷+𝝂]𝜸𝜹](𝐳1𝐳2|2𝛀).

Thus 𝝂 is a g-dimensional vector whose entries are either 0 or 1. For this result and a generalization see Koizumi (1976) and Belokolos et al. (1994, pp. 38–41). For addition formulas for classical theta functions see §20.7(ii).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy