24.4.1 | ||||
ⓘ
| ||||
24.4.2 | ||||
ⓘ
|
24.4.3 | ||||
ⓘ
| ||||
24.4.4 | ||||
ⓘ
| ||||
24.4.5 | ||||
ⓘ
| ||||
24.4.6 | ||||
ⓘ
|
24.4.7 | ||||
ⓘ
| ||||
24.4.8 | ||||
ⓘ
|
24.4.9 | ||||
ⓘ
| ||||
24.4.10 | ||||
ⓘ
| ||||
24.4.11 | ||||
ⓘ
|
24.4.12 | ||||
ⓘ
| ||||
24.4.13 | ||||
ⓘ
| ||||
24.4.14 | ||||
ⓘ
|
24.4.15 | ||||
ⓘ
| ||||
24.4.16 | ||||
ⓘ
| ||||
24.4.17 | ||||
ⓘ
|
24.4.18 | |||
ⓘ
|
Next,
24.4.19 | |||
, | |||
ⓘ
|
24.4.20 | |||
. | |||
ⓘ
|
24.4.21 | ||||
ⓘ
| ||||
24.4.22 | ||||
ⓘ
| ||||
24.4.23 | ||||
ⓘ
|
24.4.24 | |||
, . | |||
ⓘ
|
24.4.25 | |||
ⓘ
|
24.4.26 | |||
. | |||
ⓘ
|
24.4.27 | ||||
ⓘ
| ||||
24.4.28 | ||||
ⓘ
|
24.4.29 | |||
ⓘ
|
24.4.30 | |||
. | |||
ⓘ
|
24.4.31 | |||
. | |||
ⓘ
|
24.4.32 | |||
ⓘ
|
24.4.33 | |||
ⓘ
|
24.4.34 | ||||
, | ||||
ⓘ
| ||||
24.4.35 | ||||
. | ||||
ⓘ
|
Let denote any polynomial in , and after expanding set and . Then
24.4.36 | ||||
ⓘ
| ||||
24.4.37 | ||||
ⓘ
| ||||
24.4.38 | ||||
ⓘ
| ||||
24.4.39 | ||||
ⓘ
|
For these results and also connections with the umbral calculus see Gessel (2003).