About the Project
5 Gamma FunctionProperties

§5.2 Definitions

Contents
  1. §5.2(i) Gamma and Psi Functions
  2. §5.2(ii) Euler’s Constant
  3. §5.2(iii) Pochhammer’s Symbol

§5.2(i) Gamma and Psi Functions

Euler’s Integral

5.2.1 Γ(z)=0ettz1dt,
z>0.

When z0, Γ(z) is defined by analytic continuation. It is a meromorphic function with no zeros, and with simple poles of residue (1)n/n! at z=n. 1/Γ(z) is entire, with simple zeros at z=n.

5.2.2 ψ(z)=Γ(z)/Γ(z),
z0,1,2,.

ψ(z) is meromorphic with simple poles of residue 1 at z=n.

§5.2(ii) Euler’s Constant

5.2.3 γ=limn(1+12+13++1nlnn)=0.57721 56649 01532 86060.

§5.2(iii) Pochhammer’s Symbol

5.2.4 (a)0 =1,
(a)n =a(a+1)(a+2)(a+n1),
5.2.5 (a)n =Γ(a+n)/Γ(a),
a0,1,2,.
5.2.6 (a)n=(1)n(an+1)n,
5.2.7 (m)n={(1)nm!(mn)!,0nm,0,n>m,
5.2.8 (a)2n =22n(a2)n(a+12)n,
(a)2n+1 =22n+1(a2)n+1(a+12)n.

Pochhammer symbols (rising factorials) (x)n=x(x+1)(x+n1) and falling factorials (1)n(x)n=x(x1)(xn+1) can be expressed in terms of each other via

5.2.9 (x)n =k=0nL(n,k)x(x1)(xk+1),
x(x1)(xn+1) =k=0n(1)nkL(n,k)(x)k,

in which L(n,k)=(n1k1)n!k! is the Lah number.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy