About the Project
9 Airy and Related FunctionsAiry Functions

§9.2 Differential Equation

Contents
  1. §9.2(i) Airy’s Equation
  2. §9.2(ii) Initial Values
  3. §9.2(iii) Numerically Satisfactory Pairs of Solutions
  4. §9.2(iv) Wronskians
  5. §9.2(v) Connection Formulas
  6. §9.2(vi) Riccati Form of Differential Equation

§9.2(i) Airy’s Equation

9.2.1 d2wdz2=zw.

All solutions are entire functions of z.

Standard solutions are:

9.2.2 w=Ai(z),Bi(z),Ai(ze2πi/3).

§9.2(ii) Initial Values

9.2.3 Ai(0) =132/3Γ(23)=0.35502 80538,
9.2.4 Ai(0) =131/3Γ(13)=0.25881 94037,
9.2.5 Bi(0) =131/6Γ(23)=0.61492 66274,
9.2.6 Bi(0) =31/6Γ(13)=0.44828 83573.

§9.2(iii) Numerically Satisfactory Pairs of Solutions

Table 9.2.1 lists numerically satisfactory pairs of solutions of (9.2.1) for the stated intervals or regions; compare §2.7(iv).

Table 9.2.1: Numerically satisfactory pairs of solutions of Airy’s equation.
Pair Interval or Region
Ai(x),Bi(x) <x<
Ai(z),Bi(z) {|phz|13π<z0
Ai(z),Ai(ze2πi/3) 13πphzπ
Ai(z),Ai(ze2πi/3) πphz13π
Ai(ze2πi/3) |ph(z)|23π

§9.2(iv) Wronskians

9.2.7 𝒲{Ai(z),Bi(z)}=1π,
9.2.8 𝒲{Ai(z),Ai(ze2πi/3)}=e±πi/62π,
9.2.9 𝒲{Ai(ze2πi/3),Ai(ze2πi/3)}=12πi.

§9.2(v) Connection Formulas

9.2.10 Bi(z)=eπi/6Ai(ze2πi/3)+eπi/6Ai(ze2πi/3).
9.2.11 Ai(ze2πi/3)=12eπi/3(Ai(z)±iBi(z)).
9.2.12 Ai(z)+e2πi/3Ai(ze2πi/3)+e2πi/3Ai(ze2πi/3)=0,
9.2.13 Bi(z)+e2πi/3Bi(ze2πi/3)+e2πi/3Bi(ze2πi/3)=0.
9.2.14 Ai(z) =eπi/3Ai(zeπi/3)+eπi/3Ai(zeπi/3),
9.2.15 Bi(z) =eπi/6Ai(zeπi/3)+eπi/6Ai(zeπi/3).

§9.2(vi) Riccati Form of Differential Equation

9.2.16 dWdz+W2=z,

W=(1/w)dw/dz, where w is any nontrivial solution of (9.2.1). See also Smith (1990).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy