About the Project
10 Bessel FunctionsBessel and Hankel Functions

§10.11 Analytic Continuation

When m,

10.11.1 Jν(zemπi)=emνπiJν(z),
10.11.2 Yν(zemπi)=emνπiYν(z)+2isin(mνπ)cot(νπ)Jν(z).
10.11.3 sin(νπ)Hν(1)(zemπi)=sin((m1)νπ)Hν(1)(z)eνπisin(mνπ)Hν(2)(z),
10.11.4 sin(νπ)Hν(2)(zemπi)=eνπisin(mνπ)Hν(1)(z)+sin((m+1)νπ)Hν(2)(z).
10.11.5 Hν(1)(zeπi) =eνπiHν(2)(z),
Hν(2)(zeπi) =eνπiHν(1)(z).

If ν=n (), then limiting values are taken in (10.11.2)–(10.11.4):

10.11.6 Yn(zemπi)=(1)mn(Yn(z)+2imJn(z)),
10.11.7 Hn(1)(zemπi)=(1)mn1((m1)Hn(1)(z)+mHn(2)(z)),
10.11.8 Hn(2)(zemπi)=(1)mn(mHn(1)(z)+(m+1)Hn(2)(z)).

For real ν,

10.11.9 Jν(z¯) =Jν(z)¯, Yν(z¯) =Yν(z)¯,
Hν(1)(z¯) =Hν(2)(z)¯, Hν(2)(z¯) =Hν(1)(z)¯.

For complex ν replace ν by ν¯ on the right-hand sides.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy