About the Project
10 Bessel FunctionsSpherical Bessel Functions

§10.49 Explicit Formulas

Contents
  1. §10.49(i) Unmodified Functions
  2. §10.49(ii) Modified Functions
  3. §10.49(iii) Rayleigh’s Formulas
  4. §10.49(iv) Sums or Differences of Squares

§10.49(i) Unmodified Functions

Define ak(ν) as in (10.17.1). Then

10.49.1 ak(n+12)={(n+k)!2kk!(nk)!,k=0,1,,n,0,k=n+1,n+2,.
10.49.2 𝗃n(z)=sin(z12nπ)k=0n/2(1)ka2k(n+12)z2k+1+cos(z12nπ)k=0(n1)/2(1)ka2k+1(n+12)z2k+2.
10.49.3 𝗃0(z) =sinzz,
𝗃1(z) =sinzz2coszz,
𝗃2(z) =(1z+3z3)sinz3z2cosz.
10.49.4 𝗒n(z)=cos(z12nπ)k=0n/2(1)ka2k(n+12)z2k+1+sin(z12nπ)k=0(n1)/2(1)ka2k+1(n+12)z2k+2.
10.49.5 𝗒0(z) =coszz,
𝗒1(z) =coszz2sinzz,
𝗒2(z) =(1z3z3)cosz3z2sinz.
10.49.6 𝗁n(1)(z) =eizk=0nikn1ak(n+12)zk+1,
10.49.7 𝗁n(2)(z) =eizk=0n(i)kn1ak(n+12)zk+1.

§10.49(ii) Modified Functions

Again, with ak(n+12) as in (10.49.1),

10.49.8 𝗂n(1)(z)=12ezk=0n(1)kak(n+12)zk+1+(1)n+112ezk=0nak(n+12)zk+1.
10.49.9 𝗂0(1)(z) =sinhzz,
𝗂1(1)(z) =sinhzz2+coshzz,
𝗂2(1)(z) =(1z+3z3)sinhz3z2coshz.
10.49.10 𝗂n(2)(z)=12ezk=0n(1)kak(n+12)zk+1+(1)n12ezk=0nak(n+12)zk+1.
10.49.11 𝗂0(2)(z) =coshzz,
𝗂1(2)(z) =coshzz2+sinhzz,
𝗂2(2)(z) =(1z+3z3)coshz3z2sinhz.
10.49.12 𝗄n(z)=12πezk=0nak(n+12)zk+1.
10.49.13 𝗄0(z) =12πezz,
𝗄1(z) =12πez(1z+1z2),
𝗄2(z) =12πez(1z+3z2+3z3).

k=0nak(n+12)znk is sometimes called the Bessel polynomial of degree n. For a survey of properties of these polynomials and their generalizations see Grosswald (1978). See also §18.34, de Bruin et al. (1981a, b), and Dunster (2001c).

§10.49(iii) Rayleigh’s Formulas

10.49.14 𝗃n(z) =zn(1zddz)nsinzz,
𝗒n(z) =zn(1zddz)ncoszz.
10.49.15 𝗂n(1)(z) =zn(1zddz)nsinhzz,
𝗂n(2)(z) =zn(1zddz)ncoshzz.
10.49.16 𝗄n(z)=(1)n12πzn(1zddz)nezz.

§10.49(iv) Sums or Differences of Squares

Denote

10.49.17 sk(n+12)=(2k)!(n+k)!22k(k!)2(nk)!,
k=0,1,,n.

Then

10.49.18 𝗃n2(z)+𝗒n2(z)=k=0nsk(n+12)z2k+2.
10.49.19 𝗃02(z)+𝗒02(z) =z2,
𝗃12(z)+𝗒12(z) =z2+z4,
𝗃22(z)+𝗒22(z) =z2+3z4+9z6.
10.49.20 (𝗂n(1)(z))2(𝗂n(2)(z))2=(1)n+1k=0n(1)ksk(n+12)z2k+2.
10.49.21 (𝗂0(1)(z))2(𝗂0(2)(z))2 =z2,
(𝗂1(1)(z))2(𝗂1(2)(z))2 =z2z4,
(𝗂2(1)(z))2(𝗂2(2)(z))2 =z2+3z49z6.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy