About the Project
10 Bessel FunctionsBessel and Hankel Functions

§10.6 Recurrence Relations and Derivatives

Contents
  1. §10.6(i) Recurrence Relations
  2. §10.6(ii) Derivatives
  3. §10.6(iii) Cross-Products

§10.6(i) Recurrence Relations

With 𝒞ν(z) defined as in §10.2(ii),

10.6.1 𝒞ν1(z)+𝒞ν+1(z) =(2ν/z)𝒞ν(z),
𝒞ν1(z)𝒞ν+1(z) =2𝒞ν(z).
10.6.2 𝒞ν(z) =𝒞ν1(z)(ν/z)𝒞ν(z),
𝒞ν(z) =𝒞ν+1(z)+(ν/z)𝒞ν(z).
10.6.3 J0(z) =J1(z), Y0(z) =Y1(z),
H0(1)(z) =H1(1)(z), H0(2)(z) =H1(2)(z).

If fν(z)=zp𝒞ν(λzq), where p,q, and λ (0) are real or complex constants, then

10.6.4 fν1(z)+fν+1(z) =(2ν/λ)zqfν(z),
(p+νq)fν1(z)+(pνq)fν+1(z) =(2ν/λ)z1qfν(z).
10.6.5 zfν(z) =λqzqfν1(z)+(pνq)fν(z),
zfν(z) =λqzqfν+1(z)+(p+νq)fν(z).

For results on modified quotients of the form z𝒞ν±1(z)/𝒞ν(z) see Onoe (1955) and Onoe (1956).

§10.6(ii) Derivatives

For k=0,1,2,,

10.6.6 (1zddz)k(zν𝒞ν(z)) =zνk𝒞νk(z),
(1zddz)k(zν𝒞ν(z)) =(1)kzνk𝒞ν+k(z).
10.6.7 𝒞ν(k)(z)=12kn=0k(1)n(kn)𝒞νk+2n(z).

§10.6(iii) Cross-Products

Let

10.6.8 pν =Jν(a)Yν(b)Jν(b)Yν(a),
qν =Jν(a)Yν(b)Jν(b)Yν(a),
rν =Jν(a)Yν(b)Jν(b)Yν(a),
sν =Jν(a)Yν(b)Jν(b)Yν(a),

where a and b are independent of ν. Then

10.6.9 pν+1pν1 =2νaqν2νbrν,
qν+1+rν =νapνν+1bpν+1,
rν+1+qν =νbpνν+1apν+1,
sν =12pν+1+12pν1ν2abpν,

and

10.6.10 pνsνqνrν=4/(π2ab).
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy