About the Project
12 Parabolic Cylinder FunctionsProperties

§12.5 Integral Representations

Contents
  1. §12.5(i) Integrals Along the Real Line
  2. §12.5(ii) Contour Integrals
  3. §12.5(iii) Mellin–Barnes Integrals
  4. §12.5(iv) Compendia

§12.5(i) Integrals Along the Real Line

12.5.1 U(a,z)=e14z2Γ(12+a)0ta12e12t2ztdt,
a>12 ,
12.5.2 U(a,z)=ze14z2Γ(14+12a)0t12a34et(z2+2t)12a34dt,
|phz|<12π, a>12 ,
12.5.3 U(a,z)=e14z2Γ(34+12a)0t12a14et(z2+2t)12a14dt,
|phz|<12π, a>32 ,
12.5.4 U(a,z)=2πe14z20ta12e12t2cos(zt+(12a+14)π)dt,
a<12 .

§12.5(ii) Contour Integrals

The following integrals correspond to those of §12.5(i).

12.5.5 U(a,z)=Γ(12a)2πie14z2(0+)ezt12t2ta12dt,
a12,32,52,, π<pht<π.

For the particular loop contour, see Figure 5.9.1.

Restrictions on a are not needed in the following two representations:

12.5.6 U(a,z)=e14z2i2πcic+iezt+12t2ta12dt,
12π<pht<12π, c>0 ,
12.5.7 V(a,z)=e14z22π(icic++icic+)ezt12t2ta12dt,
π<pht<π, c>0.

For proofs and further results see Miller (1955, §4) and Whittaker (1902).

§12.5(iii) Mellin–Barnes Integrals

12.5.8 U(a,z) =e14z2za122πiΓ(12+a)iiΓ(t)Γ(12+a2t)2tz2tdt,
a12,32,52,, |phz|<34π,
where the contour separates the poles of Γ(t) from those of Γ(12+a2t).
12.5.9 V(a,z) =2πe14z2za122πiΓ(12a)iiΓ(t)Γ(12a2t)2tz2tcos(πt)dt,
a12,32,52,, |phz|<14π,

where the contour separates the poles of Γ(t) from those of Γ(12a2t).

§12.5(iv) Compendia

For further collections of integral representations see Apelblat (1983, pp. 427-436), Erdélyi et al. (1953b, v. 2, pp. 119–120), Erdélyi et al. (1954a, pp. 289–291 and 362), Gradshteyn and Ryzhik (2015, §§9.24–9.25), Magnus et al. (1966, pp. 328–330), Oberhettinger (1974, pp. 251–252), and Oberhettinger and Badii (1973, pp. 378–384).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy