About the Project
18 Orthogonal PolynomialsAskey Scheme

§18.25 Wilson Class: Definitions

Contents
  1. §18.25(i) Preliminaries
  2. §18.25(ii) Weights and Standardizations: Continuous Cases
  3. §18.25(iii) Weights and Normalizations: Discrete Cases
  4. §18.25(iv) Leading Coefficients

§18.25(i) Preliminaries

For the Wilson class OP’s pn(x) with x=λ(y): if the y-orthogonality set is {0,1,,N}, then the role of the differentiation operator d/dx in the Jacobi, Laguerre, and Hermite cases is played by the operator Δy followed by division by Δy(λ(y)), or by the operator y followed by division by y(λ(y)). Alternatively if the y-orthogonality interval is (0,), then the role of d/dx is played by the operator δy followed by division by δy(λ(y)). The Wilson class consists of two discrete families (Racah and dual Hahn) and two continuous families (Wilson and continuous dual Hahn).

Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials Wn(x;a,b,c,d), continuous dual Hahn polynomials Sn(x;a,b,c), Racah polynomials Rn(x;α,β,γ,δ), and dual Hahn polynomials Rn(x;γ,δ,N).

Table 18.25.1: Wilson class OP’s: transformations of variable, orthogonality ranges, and parameter constraints.
OP pn(x) x=λ(y) Orthogonality range for y Constraints
Wilson Wn(x;a,b,c,d) y2 (0,) (a,b,c,d)>0; nonreal parameters in conjugate pairs
continuous dual Hahn Sn(x;a,b,c) y2 (0,) (a,b,c)>0; nonreal parameters in conjugate pairs
Racah Rn(x;α,β,γ,δ) y(y+γ+δ+1) {0,1,,N} α+1 or β+δ+1 or γ+1=N; for further constraints see (18.25.1)
dual Hahn Rn(x;γ,δ,N) y(y+γ+δ+1) {0,1,,N} γ,δ>1 or <N

Under certain conditions on their parameters the orthogonality range for the Wilson polynomials and continuous dual Hahn polynomials is (0,)S, where S is a specific finite set, e.g., for the case a<0 and a+b, a+c, a+d are positive or a pair of complex conjugates with positive real parts, see Wilson (1980, (3.3)) or Koekoek et al. (2010, (9.1.3)).

Further Constraints for Racah Polynomials

If α+1=N, then the weights will be positive iff one of the following eight sets of inequalities holds:

18.25.1 δ1 <β<γ+1<N+1.
N1 <δ1<β<γ+1.
γ,δ >1,β>N+γ.
γ,δ >1,β<Nδ.
N1 <N+γ<β<Nδ.
N+γ <β<Nδ<N1.
γ,δ <N,β>1δ.
γ,δ <N,β<γ+1.

The first four sets imply γ+δ>2, and the last four imply γ+δ<2N.

§18.25(ii) Weights and Standardizations: Continuous Cases

18.25.2 0pn(x)pm(x)w(x)dx=hnδn,m.

Wilson

18.25.3 pn(x)=Wn(x;a1,a2,a3,a4),
18.25.4 w(y2)=12y|jΓ(aj+iy)Γ(2iy)|2,
18.25.5 hn=n! 2πj<Γ(n+aj+a)(2n1+jaj)Γ(n1+jaj).

Continuous Dual Hahn

18.25.6 pn(x) =Sn(x;a1,a2,a3),
18.25.7 w(y2) =12y|jΓ(aj+iy)Γ(2iy)|2,
18.25.8 hn =n! 2πj<Γ(n+aj+a).

§18.25(iii) Weights and Normalizations: Discrete Cases

18.25.9 y=0Npn(y(y+γ+δ+1))pm(y(y+γ+δ+1))γ+δ+1+2yγ+δ+1+yωy=hnδn,m.

Racah

18.25.10 pn(x)=Rn(x;α,β,γ,δ),
α+1=N,
18.25.11 ωy =(α+1)y(β+δ+1)y(γ+1)y(γ+δ+2)y(α+γ+δ+1)y(β+γ+1)y(δ+1)yy!,
18.25.12 hn =(β)N(γ+δ+2)N(β+γ+1)N(δ+1)N(n+α+β+1)nn!(α+β+2)2n(α+βγ+1)n(αδ+1)n(β+1)n(α+1)n(β+δ+1)n(γ+1)n.

Dual Hahn

18.25.13 pn(x)=Rn(x;γ,δ,N),
18.25.14 ωy=(1)y(N)y(γ+1)y(γ+δ+1)2(N+γ+δ+2)y(δ+1)yy!,
18.25.15 hn=n!(Nn)!(γ+δ+2)NN!(γ+1)n(δ+1)Nn.

§18.25(iv) Leading Coefficients

Table 18.25.2 provides the leading coefficients kn18.2(iii)) for the Wilson, continuous dual Hahn, Racah, and dual Hahn polynomials.

Table 18.25.2: Wilson class OP’s: leading coefficients.
pn(x) kn
Wn(x;a,b,c,d) (1)n(n+a+b+c+d1)n
Sn(x;a,b,c) (1)n
Rn(x;α,β,γ,δ) (n+α+β+1)n(α+1)n(β+δ+1)n(γ+1)n
Rn(x;γ,δ,N) 1(γ+1)n(N)n
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy