About the Project
22 Jacobian Elliptic FunctionsProperties

§22.10 Maclaurin Series

Contents
  1. §22.10(i) Maclaurin Series in z
  2. §22.10(ii) Maclaurin Series in k and k

§22.10(i) Maclaurin Series in z

Initial terms are given by

22.10.1 sn(z,k)=z(1+k2)z33!+(1+14k2+k4)z55!(1+135k2+135k4+k6)z77!+O(z9),
22.10.2 cn(z,k)=1z22!+(1+4k2)z44!(1+44k2+16k4)z66!+O(z8),
22.10.3 dn(z,k)=1k2z22!+k2(4+k2)z44!k2(16+44k2+k4)z66!+O(z8).

Further terms may be derived by substituting in the differential equations (22.13.13), (22.13.14), (22.13.15). The full expansions converge when |z|<min(K(k),K(k)).

§22.10(ii) Maclaurin Series in k and k

Initial terms are given by

22.10.4 sn(z,k)=sinzk24(zsinzcosz)cosz+O(k4),
22.10.5 cn(z,k)=cosz+k24(zsinzcosz)sinz+O(k4),
22.10.6 dn(z,k)=1k22sin2z+O(k4),
22.10.7 sn(z,k)=tanhzk24(zsinhzcoshz)sech2z+O(k4),
22.10.8 cn(z,k)=sechz+k24(zsinhzcoshz)tanhzsechz+O(k4),
22.10.9 dn(z,k)=sechz+k24(z+sinhzcoshz)tanhzsechz+O(k4).

Further terms may be derived from the differential equations (22.13.13), (22.13.14), (22.13.15), or from the integral representations of the inverse functions in §22.15(ii). The radius of convergence is the distance to the origin from the nearest pole in the complex k-plane in the case of (22.10.4)–(22.10.6), or complex k-plane in the case of (22.10.7)–(22.10.9); see §22.17.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy