About the Project
22 Jacobian Elliptic FunctionsProperties

§22.13 Derivatives and Differential Equations

Contents
  1. §22.13(i) Derivatives
  2. §22.13(ii) First-Order Differential Equations
  3. §22.13(iii) Second-Order Differential Equations

§22.13(i) Derivatives

Table 22.13.1: Derivatives of Jacobian elliptic functions with respect to variable.
ddz(snz)= cnzdnz ddz(dcz) = k2sczncz
ddz(cnz)= snzdnz ddz(ncz) = sczdcz
ddz(dnz)= k2snzcnz ddz(scz) = dczncz
ddz(cdz)= k2sdzndz ddz(nsz) = dszcsz
ddz(sdz)= cdzndz ddz(dsz) = csznsz
ddz(ndz)= k2sdzcdz ddz(csz) = nszdsz

Note that each derivative in Table 22.13.1 is a constant multiple of the product of the corresponding copolar functions. (The modulus k is suppressed throughout the table.)

For alternative, and symmetric, formulations of these results see Carlson (2004, 2006a).

§22.13(ii) First-Order Differential Equations

22.13.1 (ddzsn(z,k))2 =(1sn2(z,k))(1k2sn2(z,k)),
22.13.2 (ddzcn(z,k))2 =(1cn2(z,k))(k2+k2cn2(z,k)),
22.13.3 (ddzdn(z,k))2 =(1dn2(z,k))(dn2(z,k)k2).
22.13.4 (ddzcd(z,k))2 =(1cd2(z,k))(1k2cd2(z,k)),
22.13.5 (ddzsd(z,k))2 =(1k2sd2(z,k))(1+k2sd2(z,k)),
22.13.6 (ddznd(z,k))2 =(nd2(z,k)1)(1k2nd2(z,k)),
22.13.7 (ddzdc(z,k))2 =(dc2(z,k)1)(dc2(z,k)k2),
22.13.8 (ddznc(z,k))2 =(k2+k2nc2(z,k))(nc2(z,k)1),
22.13.9 (ddzsc(z,k))2 =(1+sc2(z,k))(1+k2sc2(z,k)),
22.13.10 (ddzns(z,k))2 =(ns2(z,k)k2)(ns2(z,k)1),
22.13.11 (ddzds(z,k))2 =(ds2(z,k)k2)(k2+ds2(z,k)),
22.13.12 (ddzcs(z,k))2 =(1+cs2(z,k))(k2+cs2(z,k)).

For alternative, and symmetric, formulations of these results see Carlson (2006a).

§22.13(iii) Second-Order Differential Equations

22.13.13 d2dz2sn(z,k) =(1+k2)sn(z,k)+2k2sn3(z,k),
22.13.14 d2dz2cn(z,k) =(k2k2)cn(z,k)2k2cn3(z,k),
22.13.15 d2dz2dn(z,k) =(1+k2)dn(z,k)2dn3(z,k).
22.13.16 d2dz2cd(z,k) =(1+k2)cd(z,k)+2k2cd3(z,k),
22.13.17 d2dz2sd(z,k) =(k2k2)sd(z,k)2k2k2sd3(z,k),
22.13.18 d2dz2nd(z,k) =(1+k2)nd(z,k)2k2nd3(z,k),
22.13.19 d2dz2dc(z,k) =(1+k2)dc(z,k)+2dc3(z,k),
22.13.20 d2dz2nc(z,k) =(k2k2)nc(z,k)+2k2nc3(z,k),
22.13.21 d2dz2sc(z,k) =(1+k2)sc(z,k)+2k2sc3(z,k),
22.13.22 d2dz2ns(z,k) =(1+k2)ns(z,k)+2ns3(z,k),
22.13.23 d2dz2ds(z,k) =(k2k2)ds(z,k)+2ds3(z,k),
22.13.24 d2dz2cs(z,k) =(1+k2)cs(z,k)+2cs3(z,k).

For alternative, and symmetric, formulations of these results see Carlson (2006a).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy