About the Project
22 Jacobian Elliptic FunctionsProperties

§22.2 Definitions

The nome q is given in terms of the modulus k by

22.2.1 q=exp(πK(k)/K(k)),

where K(k), K(k) are defined in §19.2(ii). Inversely,

22.2.2 k =θ22(0,q)θ32(0,q),
k =θ42(0,q)θ32(0,q),
K(k) =π2θ32(0,q),

where k=1k2 and the theta functions are defined in §20.2(i).

With

22.2.3 ζ=πz2K(k),
22.2.4 sn(z,k)=θ3(0,q)θ2(0,q)θ1(ζ,q)θ4(ζ,q)=1ns(z,k),
22.2.5 cn(z,k)=θ4(0,q)θ2(0,q)θ2(ζ,q)θ4(ζ,q)=1nc(z,k),
22.2.6 dn(z,k)=θ4(0,q)θ3(0,q)θ3(ζ,q)θ4(ζ,q)=1nd(z,k),
22.2.7 sd(z,k)=θ32(0,q)θ2(0,q)θ4(0,q)θ1(ζ,q)θ3(ζ,q)=1ds(z,k),
22.2.8 cd(z,k)=θ3(0,q)θ2(0,q)θ2(ζ,q)θ3(ζ,q)=1dc(z,k),
22.2.9 sc(z,k)=θ3(0,q)θ4(0,q)θ1(ζ,q)θ2(ζ,q)=1cs(z,k).

As a function of z, with fixed k, each of the 12 Jacobian elliptic functions is doubly periodic, having two periods whose ratio is not real. Each is meromorphic in z for fixed k, with simple poles and simple zeros, and each is meromorphic in k for fixed z. For k[0,1], all functions are real for z.

Glaisher’s Notation

The Jacobian functions are related in the following way. Let p, q, r be any three of the letters s, c, d, n. Then

22.2.10 pq(z,k)=pr(z,k)qr(z,k)=1qp(z,k),

with the convention that functions with the same two letters are replaced by unity; e.g. ss(z,k)=1.

The six functions containing the letter s in their two-letter name are odd in z; the other six are even in z.

In terms of Neville’s theta functions (§20.1)

22.2.11 pq(z,k)=θp(z|τ)/θq(z|τ),

where

22.2.12 τ=iK(k)/K(k),

and on the left-hand side of (22.2.11) p, q are any pair of the letters s, c, d, n, and on the right-hand side they correspond to the integers 1,2,3,4.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy