About the Project
22 Jacobian Elliptic FunctionsProperties

§22.6 Elementary Identities

Contents
  1. §22.6(i) Sums of Squares
  2. §22.6(ii) Double Argument
  3. §22.6(iii) Half Argument
  4. §22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
  5. §22.6(v) Change of Modulus

§22.6(i) Sums of Squares

22.6.1 sn2(z,k)+cn2(z,k)=k2sn2(z,k)+dn2(z,k)=1,
22.6.2 1+cs2(z,k)=k2+ds2(z,k)=ns2(z,k),
22.6.3 k2sc2(z,k)+1=dc2(z,k)=k2nc2(z,k)+k2,
22.6.4 k2k2sd2(z,k)=k2(cd2(z,k)1)=k2(1nd2(z,k)).

§22.6(ii) Double Argument

22.6.5 sn(2z,k)=2sn(z,k)cn(z,k)dn(z,k)1k2sn4(z,k),
22.6.6 cn(2z,k)=cn2(z,k)sn2(z,k)dn2(z,k)1k2sn4(z,k)=cn4(z,k)k2sn4(z,k)1k2sn4(z,k),
22.6.7 dn(2z,k)=dn2(z,k)k2sn2(z,k)cn2(z,k)1k2sn4(z,k)=dn4(z,k)+k2k2sn4(z,k)1k2sn4(z,k).
22.6.8 cd(2z,k) =cd2(z,k)k2sd2(z,k)nd2(z,k)1+k2k2sd4(z,k),
22.6.9 sd(2z,k) =2sd(z,k)cd(z,k)nd(z,k)1+k2k2sd4(z,k),
22.6.10 nd(2z,k) =nd2(z,k)+k2sd2(z,k)cd2(z,k)1+k2k2sd4(z,k),
22.6.11 dc(2z,k) =dc2(z,k)+k2sc2(z,k)nc2(z,k)1k2sc4(z,k),
22.6.12 nc(2z,k) =nc2(z,k)+sc2(z,k)dc2(z,k)1k2sc4(z,k),
22.6.13 sc(2z,k) =2sc(z,k)dc(z,k)nc(z,k)1k2sc4(z,k),
22.6.14 ns(2z,k) =ns4(z,k)k22cs(z,k)ds(z,k)ns(z,k),
22.6.15 ds(2z,k) =k2k2+ds4(z,k)2cs(z,k)ds(z,k)ns(z,k),
22.6.16 cs(2z,k) =cs4(z,k)k22cs(z,k)ds(z,k)ns(z,k).

See also Carlson (2004).

22.6.17 1cn(2z,k)1+cn(2z,k) =sn2(z,k)dn2(z,k)cn2(z,k),
22.6.18 1dn(2z,k)1+dn(2z,k) =k2sn2(z,k)cn2(z,k)dn2(z,k).

§22.6(iii) Half Argument

22.6.19 sn2(12z,k) =1cn(z,k)1+dn(z,k)=1dn(z,k)k2(1+cn(z,k))=dn(z,k)k2cn(z,k)k2k2(dn(z,k)cn(z,k)),
22.6.20 cn2(12z,k) =k2+dn(z,k)+k2cn(z,k)k2(1+cn(z,k))=k2(1dn(z,k))k2(dn(z,k)cn(z,k))=k2(1+cn(z,k))k2+dn(z,k)k2cn(z,k),
22.6.21 dn2(12z,k) =k2cn(z,k)+dn(z,k)+k21+dn(z,k)=k2(1cn(z,k))dn(z,k)cn(z,k)=k2(1+dn(z,k))k2+dn(z,k)k2cn(z,k).

If {p,q,r} is any permutation of {c,d,n}, then

22.6.22 pq2(12z,k)=ps(z,k)+rs(z,k)qs(z,k)+rs(z,k)=pq(z,k)+rq(z,k)1+rq(z,k)=pr(z,k)+1qr(z,k)+1.

For (22.6.22) and similar results, see Carlson (2004).

§22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)

Table 22.6.1: Jacobi’s imaginary transformation of Jacobian elliptic functions.
sn(iz,k)= isc(z,k) dc(iz,k)= dn(z,k)
cn(iz,k)= nc(z,k) nc(iz,k)= cn(z,k)
dn(iz,k)= dc(z,k) sc(iz,k)= isn(z,k)
cd(iz,k)= nd(z,k) ns(iz,k)= ics(z,k)
sd(iz,k)= isd(z,k) ds(iz,k)= ids(z,k)
nd(iz,k)= cd(z,k) cs(iz,k)= ins(z,k)

§22.6(v) Change of Modulus

See §22.17.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy