About the Project
29 Lamé FunctionsApplications

§29.18 Mathematical Applications

Contents
  1. §29.18(i) Sphero-Conal Coordinates
  2. §29.18(ii) Ellipsoidal Coordinates
  3. §29.18(iii) Spherical and Ellipsoidal Harmonics
  4. §29.18(iv) Other Applications

§29.18(i) Sphero-Conal Coordinates

The wave equation

29.18.1 2u+ω2u=0,

when transformed to sphero-conal coordinates r,β,γ:

29.18.2 x =krsn(β,k)sn(γ,k),
y =ikkrcn(β,k)cn(γ,k),
z =1krdn(β,k)dn(γ,k),

with

29.18.3 r 0,
β =K+iβ,
0 β2K,
0 γ4K,

admits solutions

29.18.4 u(r,β,γ)=u1(r)u2(β)u3(γ),

where u1, u2, u3 satisfy the differential equations

29.18.5 ddr(r2du1dr)+(ω2r2ν(ν+1))u1 =0,
29.18.6 d2u2dβ2+(hν(ν+1)k2sn2(β,k))u2 =0,
29.18.7 d2u3dγ2+(hν(ν+1)k2sn2(γ,k))u3 =0,

with separation constants h and ν. (29.18.5) is the differential equation of spherical Bessel functions (§10.47(i)), and (29.18.6), (29.18.7) agree with the Lamé equation (29.2.1).

§29.18(ii) Ellipsoidal Coordinates

The wave equation (29.18.1), when transformed to ellipsoidal coordinates α,β,γ:

29.18.8 x =ksn(α,k)sn(β,k)sn(γ,k),
y =kkcn(α,k)cn(β,k)cn(γ,k),
z =ikkdn(α,k)dn(β,k)dn(γ,k),

with

29.18.9 α =K+iKα,
0α<K,
β =K+iβ,
0β2K,0γ4K,

admits solutions

29.18.10 u(α,β,γ)=u1(α)u2(β)u3(γ),

where u1, u2, u3 each satisfy the Lamé wave equation (29.11.1).

§29.18(iii) Spherical and Ellipsoidal Harmonics

See Erdélyi et al. (1955, §15.7).

§29.18(iv) Other Applications

Triebel (1965) gives applications of Lamé functions to the theory of conformal mappings. Patera and Winternitz (1973) finds bases for the rotation group.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy