About the Project
29 Lamé FunctionsLamé Functions

§29.6 Fourier Series

Contents
  1. §29.6(i) Function 𝐸𝑐ν2m(z,k2)
  2. §29.6(ii) Function 𝐸𝑐ν2m+1(z,k2)
  3. §29.6(iii) Function 𝐸𝑠ν2m+1(z,k2)
  4. §29.6(iv) Function 𝐸𝑠ν2m+2(z,k2)

§29.6(i) Function 𝐸𝑐ν2m(z,k2)

With ϕ=12πam(z,k), as in (29.2.5), we have

29.6.1 𝐸𝑐ν2m(z,k2)=12A0+p=1A2pcos(2pϕ).

Here

29.6.2 H=2aν2m(k2)ν(ν+1)k2,
29.6.3 (β0H)A0+α0A2=0,
29.6.4 γpA2p2+(βpH)A2p+αpA2p+2=0,
p1,

with αp, βp, and γp as in (29.3.11) and (29.3.12), and

29.6.5 12A02+p=1A2p2=1,
29.6.6 12A0+p=1A2p>0.

When ν2n, where n is a nonnegative integer, it follows from §2.9(i) that for any value of H the system (29.6.4)–(29.6.6) has a unique recessive solution A0,A2,A4,; furthermore

29.6.7 limpA2p+2A2p=k2(1+k)2,
ν2n, or ν=2n and m>n.

In addition, if H satisfies (29.6.2), then (29.6.3) applies.

In the special case ν=2n, m=0,1,,n, there is a unique nontrivial solution with the property A2p=0, p=n+1,n+2,. This solution can be constructed from (29.6.4) by backward recursion, starting with A2n+2=0 and an arbitrary nonzero value of A2n, followed by normalization via (29.6.5) and (29.6.6). Consequently, 𝐸𝑐ν2m(z,k2) reduces to a Lamé polynomial; compare §§29.12(i) and 29.15(i).

An alternative version of the Fourier series expansion (29.6.1) is given by

29.6.8 𝐸𝑐ν2m(z,k2)=dn(z,k)(12C0+p=1C2pcos(2pϕ)).

Here dn(z,k) is as in §22.2, and

29.6.9 (β0H)C0+α0C2=0,
29.6.10 γpC2p2+(βpH)C2p+αpC2p+2=0,
p1,

with αp,βp, and γp now defined by

29.6.11 αp ={ν(ν+1)k2,p=0,12(ν2p)(ν+2p+1)k2,p1,
βp =4p2(2k2),
γp =12(ν2p+1)(ν+2p)k2,

and

29.6.12 (112k2)(12C02+p=1C2p2)12k2p=0C2pC2p+2=1,
29.6.13 12C0+p=1C2p>0,
29.6.14 limpC2p+2C2p=k2(1+k)2,
ν2n+1, or ν=2n+1 and m>n,
29.6.15 12A0C0+p=1A2pC2p=4π0K(𝐸𝑐ν2m(x,k2))2dx.

§29.6(ii) Function 𝐸𝑐ν2m+1(z,k2)

29.6.16 𝐸𝑐ν2m+1(z,k2)=p=0A2p+1cos((2p+1)ϕ).

Here

29.6.17 H=2aν2m+1(k2)ν(ν+1)k2,
29.6.18 (β0H)A1+α0A3=0,
29.6.19 γpA2p1+(βpH)A2p+1+αpA2p+3=0,
p1,

with αp, βp, and γp as in (29.3.13) and (29.3.14), and

29.6.20 p=0A2p+12=1,
29.6.21 p=0A2p+1>0,
29.6.22 limpA2p+1A2p1=k2(1+k)2,
ν2n+1, or ν=2n+1 and m>n.

Also,

29.6.23 𝐸𝑐ν2m+1(z,k2)=dn(z,k)p=0C2p+1cos((2p+1)ϕ),

where

29.6.24 (β0H)C1+α0C3=0,
29.6.25 γpC2p1+(βpH)C2p+1+αpC2p+3=0,
p1,

with

29.6.26 αp =12(ν2p1)(ν+2p+2)k2,
βp ={2k2+12ν(ν+1)k2,p=0,(2p+1)2(2k2),p1,
γp =12(ν2p)(ν+2p+1)k2,

and

29.6.27 (112k2)p=0C2p+1212k2(12C12+p=0C2p+1C2p+3)=1,
29.6.28 p=0C2p+1>0,
29.6.29 limpC2p+1C2p1=k2(1+k)2,
ν2n+2, or ν=2n+2 and m>n,
29.6.30 p=0A2p+1C2p+1=4π0K(𝐸𝑐ν2m+1(x,k2))2dx.

§29.6(iii) Function 𝐸𝑠ν2m+1(z,k2)

29.6.31 𝐸𝑠ν2m+1(z,k2)=p=0B2p+1sin((2p+1)ϕ).

Here

29.6.32 H=2bν2m+1(k2)ν(ν+1)k2,
29.6.33 (β0H)B1+α0B3=0,
29.6.34 γpB2p1+(βpH)B2p+1+αpB2p+3=0,
p1,

with αp, βp, and γp as in (29.3.15), (29.3.16), and

29.6.35 p=0B2p+12=1,
29.6.36 p=0(2p+1)B2p+1>0,
29.6.37 limpB2p+1B2p1=k2(1+k)2,
ν2n+1, or ν=2n+1 and m>n.

Also,

29.6.38 𝐸𝑠ν2m+1(z,k2)=dn(z,k)p=0D2p+1sin((2p+1)ϕ),

where

29.6.39 (β0H)D1+α0D3=0,
29.6.40 γpD2p1+(βpH)D2p+1+αpD2p+3=0,
p1,

with

29.6.41 αp =12(ν2p1)(ν+2p+2)k2,
βp ={2k212ν(ν+1)k2,p=0,(2p+1)2(2k2),p1,
γp =12(ν2p)(ν+2p+1)k2,

and

29.6.42 (112k2)p=0D2p+12+12k2(12D12p=0D2p+1D2p+3)=1,
29.6.43 p=0(2p+1)D2p+1>0,
29.6.44 limpD2p+1D2p1=k2(1+k)2,
ν2n+2, or ν=2n+2 and m>n,
29.6.45 p=0B2p+1D2p+1=4π0K(𝐸𝑠ν2m+1(x,k2))2dx.

§29.6(iv) Function 𝐸𝑠ν2m+2(z,k2)

29.6.46 𝐸𝑠ν2m+2(z,k2)=p=1B2psin(2pϕ).

Here

29.6.47 H=2bν2m+2(k2)ν(ν+1)k2,
29.6.48 (β0H)B2+α0B4=0,
29.6.49 γpB2p+(βpH)B2p+2+αpB2p+4=0,
p1,

with αp, βp, and γp as in (29.3.17), and

29.6.50 p=1B2p2=1,
29.6.51 p=0(2p+2)B2p+2>0,
29.6.52 limpB2p+2B2p=k2(1+k)2,
ν2n+2, or ν=2n+2 and m>n.

Also,

29.6.53 𝐸𝑠ν2m+2(z,k2)=dn(z,k)p=1D2psin(2pϕ),

where

29.6.54 (β0H)D2+α0D4=0,
29.6.55 γpD2p+(βpH)D2p+2+αpD2p+4=0,
p1,

with

29.6.56 αp =12(ν2p2)(ν+2p+3)k2,
βp =(2p+2)2(2k2),
γp =12(ν2p1)(ν+2p+2)k2,

and

29.6.57 (112k2)p=1D2p212k2p=1D2pD2p+2=1,
29.6.58 p=0(2p+2)D2p+2>0,
29.6.59 limpD2p+2D2p=k2(1+k)2,
ν2n+3, or ν=2n+3 and m>n,
29.6.60 p=1B2pD2p=4π0K(𝐸𝑠ν2m+2(x,k2))2dx.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy