About the Project
6 Exponential, Logarithmic, Sine, and Cosine IntegralsProperties

§6.14 Integrals

Contents
  1. §6.14(i) Laplace Transforms
  2. §6.14(ii) Other Integrals
  3. §6.14(iii) Compendia

§6.14(i) Laplace Transforms

6.14.1 0eatE1(t)dt=1aln(1+a),
a>1,
6.14.2 0eatCi(t)dt=12aln(1+a2),
a>0,
6.14.3 0eatsi(t)dt=1aarctana,
a>0.

§6.14(ii) Other Integrals

6.14.4 0E12(t)dt=2ln2,
6.14.5 0costCi(t)dt=0sintsi(t)dt=14π,
6.14.6 0Ci2(t)dt=0si2(t)dt=12π,
6.14.7 0Ci(t)si(t)dt=ln2.

§6.14(iii) Compendia

For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2015, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy