About the Project
7 Error Functions, Dawson’s and Fresnel IntegralsProperties

§7.6 Series Expansions

Contents
  1. §7.6(i) Power Series
  2. §7.6(ii) Expansions in Series of Spherical Bessel Functions

§7.6(i) Power Series

7.6.1 erfz =2πn=0(1)nz2n+1n!(2n+1),
7.6.2 erfz =2πez2n=02nz2n+113(2n+1),
7.6.3 w(z) =n=0(iz)nΓ(12n+1).
7.6.4 C(z) =n=0(1)n(12π)2n(2n)!(4n+1)z4n+1,
7.6.5 C(z)=cos(12πz2)n=0(1)nπ2n13(4n+1)z4n+1+sin(12πz2)n=0(1)nπ2n+113(4n+3)z4n+3.
7.6.6 S(z)=n=0(1)n(12π)2n+1(2n+1)!(4n+3)z4n+3,
7.6.7 S(z)=cos(12πz2)n=0(1)nπ2n+113(4n+3)z4n+3+sin(12πz2)n=0(1)nπ2n13(4n+1)z4n+1.

The series in this subsection and in §7.6(ii) converge for all finite values of |z|.

§7.6(ii) Expansions in Series of Spherical Bessel Functions

For the notation see §§10.47(ii) and 18.3.

7.6.8 erfz=2zπn=0(1)n(𝗂2n(1)(z2)𝗂2n+1(1)(z2)),
7.6.9 erf(az)=2zπe(12a2)z2n=0T2n+1(a)𝗂n(1)(12z2),
1a1.
7.6.10 C(z)=zn=0𝗃2n(12πz2),
7.6.11 S(z)=zn=0𝗃2n+1(12πz2).

For further results see Luke (1969b, pp. 57–58).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy