About the Project
17 q-Hypergeometric and Related FunctionsProperties

Β§17.2 Calculus

Contents
  1. Β§17.2(i) q-Calculus
  2. Β§17.2(ii) Binomial Coefficients
  3. Β§17.2(iii) Binomial Theorem
  4. Β§17.2(iv) Derivatives
  5. Β§17.2(v) Integrals
  6. Β§17.2(vi) Rogers–Ramanujan Identities

Β§17.2(i) q-Calculus

For n=0,1,2,…,

17.2.1 (a;q)n=(1βˆ’a)⁒(1βˆ’a⁒q)⁒⋯⁒(1βˆ’a⁒qnβˆ’1),
17.2.2 (a;q)βˆ’n=1(a⁒qβˆ’n;q)n=(βˆ’q/a)n⁒q(n2)(q/a;q)n.

For Ξ½βˆˆβ„‚

17.2.3 (a;q)Ξ½=∏j=0∞(1βˆ’a⁒qj1βˆ’a⁒qΞ½+j),

when this product converges.

17.2.4 (a;q)∞ =∏j=0∞(1βˆ’a⁒qj),
17.2.5 (a1,a2,…,ar;q)n =∏j=1r(aj;q)n,
17.2.6 (a1,a2,…,ar;q)∞ =∏j=1r(aj;q)∞.
For properties of the function f⁑(q)=qβˆ’1/24⁒η⁑(ln⁑q2⁒π⁒i)=(q;q)∞ see Β§27.14. Let q=eβˆ’t and q^=eβˆ’4⁒π2/t. Then
17.2.6_1 (q;q)∞ =2⁒πt⁒exp⁑(βˆ’Ο€26⁒t+t24)⁒(q^;q^)∞,
β„œβ‘t>0,
17.2.6_2 (βˆ’q;q)∞ =12⁒exp⁑(Ο€212⁒t+t24)⁒(q^12;q^)∞,
t>0.
For these and similar results see (Apostol, 1990, Ch.Β 3) and (Katsurada, 2003, Β§3). Note that (17.2.6_1) is just (27.14.14) with a=d=0 and βˆ’b=c=1.
17.2.7 (a;qβˆ’1)n=(aβˆ’1;q)n⁒(βˆ’a)n⁒qβˆ’(n2),
17.2.8 (a;qβˆ’1)n(b;qβˆ’1)n=(aβˆ’1;q)n(bβˆ’1;q)n⁒(ab)n,
17.2.9 (a;q)n=(q1βˆ’n/a;q)n⁒(βˆ’a)n⁒q(n2),
17.2.10 (a;q)n(b;q)n=(q1βˆ’n/a;q)n(q1βˆ’n/b;q)n⁒(ab)n,
17.2.11 (a⁒qβˆ’n;q)n=(q/a;q)n⁒(βˆ’aq)n⁒qβˆ’(n2),
17.2.12 (a⁒qβˆ’n;q)n(b⁒qβˆ’n;q)n=(q/a;q)n(q/b;q)n⁒(ab)n.
17.2.13 (a;q)nβˆ’k=(a;q)n(q1βˆ’n/a;q)k⁒(βˆ’qa)k⁒q(k2)βˆ’n⁒k,
17.2.14 (a;q)nβˆ’k(b;q)nβˆ’k=(a;q)n(b;q)n⁒(q1βˆ’n/b;q)k(q1βˆ’n/a;q)k⁒(ba)k,
17.2.15 (a⁒qβˆ’n;q)k=(a;q)k⁒(q/a;q)n(q1βˆ’k/a;q)n⁒qβˆ’n⁒k,
17.2.16 (a⁒qβˆ’n;q)nβˆ’k=(q/a;q)n(q/a;q)k⁒(βˆ’aq)nβˆ’k⁒q(k2)βˆ’(n2),
17.2.17 (a⁒qn;q)k =(a;q)k⁒(a⁒qk;q)n(a;q)n,
17.2.18 (a⁒qk;q)nβˆ’k =(a;q)n(a;q)k.
17.2.19 (a;q)2⁒n=(a,a⁒q;q2)n,

more generally,

17.2.20 (a;q)k⁒n=(a,a⁒q,…,a⁒qkβˆ’1;qk)n.
17.2.21 (a2;q2)n=(a;q)n⁒(βˆ’a;q)n,
17.2.22 (q⁒a12,βˆ’q⁒a12;q)n(a12,βˆ’a12;q)n=(a⁒q2;q2)n(a;q2)n=1βˆ’a⁒q2⁒n1βˆ’a,

more generally,

17.2.23 (q⁒a1k,q⁒ωk⁒a1k,…,q⁒ωkkβˆ’1⁒a1k;q)n(a1k,Ο‰k⁒a1k,…,Ο‰kkβˆ’1⁒a1k;q)n=(a⁒qk;qk)n(a;qk)n=1βˆ’a⁒qk⁒n1βˆ’a,

where Ο‰k=e2⁒π⁒i/k.

17.2.24 limΟ„β†’0(a/Ο„;q)n⁒τn=limΟƒβ†’βˆž(a⁒σ;q)nβ’Οƒβˆ’n=(βˆ’a)n⁒q(n2),
17.2.25 limΟ„β†’0(a/Ο„;q)n(b/Ο„;q)n=limΟƒβ†’βˆž(a⁒σ;q)n(b⁒σ;q)n=(ab)n,
17.2.26 limΟ„β†’0(a/Ο„;q)n⁒(b/Ο„;q)n(c/Ο„2;q)n=(βˆ’1)n⁒(a⁒bc)n⁒q(n2).

Β§17.2(ii) Binomial Coefficients

17.2.27 [nm]q=(q;q)n(q;q)m⁒(q;q)nβˆ’m=(qβˆ’n;q)m⁒(βˆ’1)m⁒qn⁒mβˆ’(m2)(q;q)m,
17.2.28 limqβ†’1[nm]q=(nm)=n!m!⁒(nβˆ’m)!,
17.2.29 [m+nm]q=(qn+1;q)m(q;q)m,
17.2.30 [βˆ’nm]q =[m+nβˆ’1m]q⁒(βˆ’1)m⁒qβˆ’m⁒nβˆ’(m2),
17.2.31 [nm]q =[nβˆ’1mβˆ’1]q+qm⁒[nβˆ’1m]q,
17.2.32 [nm]q =[nβˆ’1m]q+qnβˆ’m⁒[nβˆ’1mβˆ’1]q,
17.2.33 limnβ†’βˆž[nm]q=1(q;q)m=1(1βˆ’q)⁒(1βˆ’q2)⁒⋯⁒(1βˆ’qm),
17.2.34 limnβ†’βˆž[r⁒n+us⁒n+t]q=1(q;q)∞=∏j=1∞1(1βˆ’qj),

provided that r>s.

Β§17.2(iii) Binomial Theorem

17.2.35 βˆ‘j=0n[nj]q⁒(βˆ’z)j⁒q(j2)=(z;q)n=(1βˆ’z)⁒(1βˆ’z⁒q)⁒⋯⁒(1βˆ’z⁒qnβˆ’1).

In the limit as q→1, (17.2.35) reduces to the standard binomial theorem

17.2.36 βˆ‘j=0n(nj)⁒(βˆ’z)j=(1βˆ’z)n.

Also,

17.2.37 βˆ‘n=0∞(a;q)n(q;q)n⁒zn=(a⁒z;q)∞(z;q)∞,

provided that |z|<1. When a=qm+1, where m is a nonnegative integer, (17.2.37) reduces to the q-binomial series

17.2.38 βˆ‘n=0∞[n+mn]q⁒zn =1(z;q)m+1.
17.2.39 βˆ‘j=0n[nj]q2⁒qj =(βˆ’q;q)n,
17.2.40 βˆ‘j=02⁒n(βˆ’1)j⁒[2⁒nj]q =(q;q2)n.

When nβ†’βˆž in (17.2.35), and when mβ†’βˆž in (17.2.38), the results become convergent infinite series and infinite products (see (17.5.1) and (17.5.4)).

See also Β§26.9(ii).

Β§17.2(iv) Derivatives

The q-derivatives of f⁑(z) are defined by

17.2.41 π’Ÿqf⁑(z)={f⁑(z)βˆ’f⁑(z⁒q)(1βˆ’q)⁒z,zβ‰ 0,f′⁑(0),z=0,

and

17.2.42 f[n]⁑(z)=π’Ÿqnf⁑(z)={zβˆ’n⁒(1βˆ’q)βˆ’nβ’βˆ‘j=0nqβˆ’n⁒j+(j+12)⁒(βˆ’1)j⁒[nj]q⁒f⁑(z⁒qj),zβ‰ 0,f(n)⁑(0)⁒(q;q)nn!⁒(1βˆ’q)n,z=0.

When q→1 the q-derivatives converge to the corresponding ordinary derivatives.

Product Rule

17.2.43 π’Ÿq(f⁑(z)⁒g⁑(z))=g⁑(z)⁒f[1]⁑(z)+f⁑(z⁒q)⁒g[1]⁑(z).

Leibniz Rule

17.2.44 π’Ÿqn(f⁑(z)⁒g⁑(z))=βˆ‘j=0n[nj]q⁒f[nβˆ’j]⁑(z⁒qj)⁒g[j]⁑(z).

q-differential equations are considered in Β§17.6(iv).

Β§17.2(v) Integrals

If f⁑(x) is continuous at x=0, then

17.2.45 ∫01f⁑(x)⁒dqx=(1βˆ’q)β’βˆ‘j=0∞f⁑(qj)⁒qj,

and more generally,

17.2.46 ∫0af⁑(x)⁒dqx=a⁒(1βˆ’q)β’βˆ‘j=0∞f⁑(a⁒qj)⁒qj.

If f⁑(x) is continuous on [0,a], then

17.2.47 limqβ†’1βˆ’βˆ«0af⁑(x)⁒dqx=∫0af⁑(x)⁒dx.

Infinite Range

17.2.48 ∫0∞f⁑(x)⁒dqx=limnβ†’βˆžβˆ«0qβˆ’nf⁑(x)⁒dqx=(1βˆ’q)β’βˆ‘j=βˆ’βˆžβˆžf⁑(qj)⁒qj,

provided that βˆ‘j=βˆ’βˆžβˆžf⁑(qj)⁒qj converges.

Β§17.2(vi) Rogers–Ramanujan Identities

17.2.49 1+βˆ‘n=1∞qn2(1βˆ’q)⁒(1βˆ’q2)⁒⋯⁒(1βˆ’qn)=∏n=0∞1(1βˆ’q5⁒n+1)⁒(1βˆ’q5⁒n+4),
17.2.50 1+βˆ‘n=1∞qn2+n(1βˆ’q)⁒(1βˆ’q2)⁒⋯⁒(1βˆ’qn)=∏n=0∞1(1βˆ’q5⁒n+2)⁒(1βˆ’q5⁒n+3).

These identities are the first in a large collection of similar results. See Β§17.14.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy