About the Project
18 Orthogonal PolynomialsAskey Scheme

§18.22 Hahn Class: Recurrence Relations and Differences

Contents
  1. §18.22(i) Recurrence Relations in n
  2. §18.22(ii) Difference Equations in x
  3. §18.22(iii) x-Differences

§18.22(i) Recurrence Relations in n

Hahn

With

18.22.1 pn(x)=Qn(x;α,β,N),
18.22.2 xpn(x)=Anpn+1(x)(An+Cn)pn(x)+Cnpn1(x),

where

18.22.3 An =(n+α+β+1)(n+α+1)(Nn)(2n+α+β+1)(2n+α+β+2),
Cn =n(n+α+β+N+1)(n+β)(2n+α+β)(2n+α+β+1).

Krawtchouk, Meixner, and Charlier

These polynomials satisfy (18.22.2) with pn(x), An, and Cn as in Table 18.22.1.

Table 18.22.1: Recurrence relations (18.22.2) for Krawtchouk, Meixner, and Charlier polynomials.
pn(x) An Cn
Kn(x;p,N) p(Nn) n(1p)
Mn(x;β,c) c(n+β)1c n1c
Cn(x;a) a n

Continuous Hahn

With

18.22.4 qn(x)=pn(x;a,b,a¯,b¯)/pn(ia;a,b,a¯,b¯),
18.22.5 (a+ix)qn(x)=A~nqn+1(x)(A~n+C~n)qn(x)+C~nqn1(x),

where

18.22.6 A~n =(n+2(a+b)1)(n+a+a¯)(n+a+b¯)(2n+2(a+b)1)(2n+2(a+b)),
C~n =n(n+b+a¯1)(n+b+b¯1)(2n+2(a+b)2)(2n+2(a+b)1).

Meixner–Pollaczek

With

18.22.7 pn(x)=Pn(λ)(x;ϕ),
18.22.8 (n+1)pn+1(x)=2(xsinϕ+(n+λ)cosϕ)pn(x)(n+2λ1)pn1(x).

§18.22(ii) Difference Equations in x

Hahn

With

18.22.9 pn(x)=Qn(x;α,β,N),
18.22.10 A(x)pn(x+1)(A(x)+C(x))pn(x)+C(x)pn(x1)n(n+α+β+1)pn(x)=0,

where

18.22.11 A(x) =(x+α+1)(xN),
C(x) =x(xβN1).

Krawtchouk, Meixner, and Charlier

18.22.12 A(x)pn(x+1)(A(x)+C(x))pn(x)+C(x)pn(x1)+λnpn(x)=0.

For A(x), C(x), and λn in (18.22.12) see Table 18.22.2.

Table 18.22.2: Difference equations (18.22.12) for Krawtchouk, Meixner, and Charlier polynomials.
pn(x) A(x) C(x) λn
Kn(x;p,N) p(xN) (p1)x n
Mn(x;β,c) c(x+β) x n(1c)
Cn(x;a) a x n

Continuous Hahn

With

18.22.13 pn(x)=pn(x;a,b,a¯,b¯),
18.22.14 A(x)pn(x+i)(A(x)+C(x))pn(x)+C(x)pn(xi)+n(n+2(a+b)1)pn(x)=0,

where

18.22.15 A(x) =(x+ia¯)(x+ib¯),
C(x) =(xia)(xib).

Meixner–Pollaczek

With

18.22.16 pn(x)=Pn(λ)(x;ϕ),
18.22.17 A(x)pn(x+i)(A(x)+C(x))pn(x)+C(x)pn(xi)+2nsinϕpn(x)=0,

where

18.22.18 A(x) =eiϕ(x+iλ),
C(x) =eiϕ(xiλ).

§18.22(iii) x-Differences

Hahn

18.22.19 ΔxQn(x;α,β,N) =n(n+α+β+1)(α+1)NQn1(x;α+1,β+1,N1),
18.22.20 x((α+1)x(β+1)Nxx!(Nx)!Qn(x;α,β,N)) =N+1β(α)x(β)N+1xx!(N+1x)!Qn+1(x;α1,β1,N+1).

Krawtchouk

18.22.21 ΔxKn(x;p,N) =npNKn1(x;p,N1),
18.22.22 x((Nx)px(1p)NxKn(x;p,N)) =(N+1x)px(1p)NxKn+1(x;p,N+1).

Meixner

18.22.23 ΔxMn(x;β,c)=n(1c)βcMn1(x;β+1,c),
18.22.24 x((β)xcxx!Mn(x;β,c))=(β1)xcxx!Mn+1(x;β1,c).

Charlier

18.22.25 ΔxCn(x;a) =naCn1(x;a),
18.22.26 x(axx!Cn(x;a)) =axx!Cn+1(x;a).

Continuous Hahn

18.22.27 δx(pn(x;a,b,a¯,b¯))=(n+2(a+b)1)pn1(x;a+12,b+12,a¯+12,b¯+12),
18.22.28 δx(w(x;a+12,b+12,a¯+12,b¯+12)pn(x;a+12,b+12,a¯+12,b¯+12))=(n+1)w(x;a,b,a¯,b¯)pn+1(x;a,b,a¯,b¯).

Meixner–Pollaczek

18.22.29 δx(Pn(λ)(x;ϕ))=2sinϕPn1(λ+12)(x;ϕ),
18.22.30 δx(w(λ+12)(x;ϕ)Pn(λ+12)(x;ϕ))=(n+1)w(λ)(x;ϕ)Pn+1(λ)(x;ϕ).
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy