DLMF
Index
Notations
Search
Help?
Citing
Customize
Annotate
UnAnnotate
About the Project
23
Weierstrass Elliptic and Modular
Functions
Weierstrass Elliptic Functions
23.10
Addition Theorems and Other Identities
23.12
Asymptotic Approximations
§23.11
Integral Representations
ⓘ
Keywords:
Weierstrass elliptic functions
,
integral representations
Notes:
See
Dienstfrey and Huang (
2006
)
.
Permalink:
http://dlmf.nist.gov/23.11
See also:
Annotations for
Ch.23
Let
τ
=
ω
3
/
ω
1
and
23.11.1
f
1
(
s
,
τ
)
=
cosh
2
(
1
2
τ
s
)
1
−
2
e
−
s
cosh
(
τ
s
)
+
e
−
2
s
,
f
2
(
s
,
τ
)
=
cos
2
(
1
2
s
)
1
−
2
e
i
τ
s
cos
s
+
e
2
i
τ
s
.
ⓘ
Symbols:
cos
z
: cosine function
,
e
: base of natural logarithm
,
cosh
z
: hyperbolic cosine function
,
i
: imaginary unit
,
τ
: complex variable
and
f
j
(
s
,
τ
)
: functions
Permalink:
http://dlmf.nist.gov/23.11.E1
Encodings:
TeX
,
TeX
,
pMML
,
pMML
,
png
,
png
See also:
Annotations for
§23.11
and
Ch.23
Then
23.11.2
℘
(
z
)
=
1
z
2
+
8
∫
0
∞
s
(
e
−
s
sinh
2
(
1
2
z
s
)
f
1
(
s
,
τ
)
+
e
i
τ
s
sin
2
(
1
2
z
s
)
f
2
(
s
,
τ
)
)
d
s
,
ⓘ
Symbols:
℘
(
z
)
(=
℘
(
z
|
𝕃
)
=
℘
(
z
;
g
2
,
g
3
)
): Weierstrass
℘
-function
,
d
x
: differential of
x
,
e
: base of natural logarithm
,
sinh
z
: hyperbolic sine function
,
i
: imaginary unit
,
∫
: integral
,
sin
z
: sine function
,
𝕃
: lattice
,
z
: complex
,
τ
: complex variable
and
f
j
(
s
,
τ
)
: functions
Permalink:
http://dlmf.nist.gov/23.11.E2
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§23.11
and
Ch.23
and
23.11.3
ζ
(
z
)
=
1
z
+
∫
0
∞
(
e
−
s
(
z
s
−
sinh
(
z
s
)
)
f
1
(
s
,
τ
)
−
e
i
τ
s
(
z
s
−
sin
(
z
s
)
)
f
2
(
s
,
τ
)
)
d
s
,
ⓘ
Symbols:
ζ
(
z
)
(=
ζ
(
z
|
𝕃
)
=
ζ
(
z
;
g
2
,
g
3
)
): Weierstrass zeta function
,
d
x
: differential of
x
,
e
: base of natural logarithm
,
sinh
z
: hyperbolic sine function
,
i
: imaginary unit
,
∫
: integral
,
sin
z
: sine function
,
𝕃
: lattice
,
z
: complex
,
τ
: complex variable
and
f
j
(
s
,
τ
)
: functions
Permalink:
http://dlmf.nist.gov/23.11.E3
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§23.11
and
Ch.23
provided that
−
1
<
ℜ
(
z
+
τ
)
<
1
and
|
ℑ
z
|
<
ℑ
τ
.