About the Project
23 Weierstrass Elliptic and Modular FunctionsModular Functions

§23.17 Elementary Properties

Contents
  1. §23.17(i) Special Values
  2. §23.17(ii) Power and Laurent Series
  3. §23.17(iii) Infinite Products

§23.17(i) Special Values

23.17.1 λ(i) =12,
λ(eπi/3) =eπi/3,
23.17.2 J(i) =1,
J(eπi/3) =0,
23.17.3 η(i) =Γ(14)2π3/4,
η(eπi/3) =31/8(Γ(13))3/22πeπi/24.

For further results for J(τ) see Cohen (1993, p. 376).

§23.17(ii) Power and Laurent Series

When |q|<1

23.17.4 λ(τ)=16q(18q+44q2+),
23.17.5 1728J(τ)=q2+744+1 96884q2+214 93760q4+,
23.17.6 η(τ)=n=(1)nq(6n+1)2/12.

In (23.17.5) for terms up to q48 see Zuckerman (1939), and for terms up to q100 see van Wijngaarden (1953). See also Apostol (1990, p. 22).

§23.17(iii) Infinite Products

23.17.7 λ(τ)=16qn=1(1+q2n1+q2n1)8,
23.17.8 η(τ)=q1/12n=1(1q2n),

with q1/12=eiπτ/12.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy