About the Project
23 Weierstrass Elliptic and Modular FunctionsWeierstrass Elliptic Functions

§23.8 Trigonometric Series and Products

Contents
  1. §23.8(i) Fourier Series
  2. §23.8(ii) Series of Cosecants and Cotangents
  3. §23.8(iii) Infinite Products

§23.8(i) Fourier Series

If q=eiπω3/ω1, (z/ω1)<2(ω3/ω1), and z𝕃, then

23.8.1 (z)+η1ω1π24ω12csc2(πz2ω1) =2π2ω12n=1nq2n1q2ncos(nπzω1),
23.8.2 ζ(z)η1zω1π2ω1cot(πz2ω1) =2πω1n=1q2n1q2nsin(nπzω1).

§23.8(ii) Series of Cosecants and Cotangents

When z𝕃,

23.8.3 (z)=η1ω1+π24ω12n=csc2(π(z+2nω3)2ω1),
23.8.4 ζ(z)=η1zω1+π2ω1n=cot(π(z+2nω3)2ω1),

where in (23.8.4) the terms in n and n are to be bracketed together (the Eisenstein convention or principal value: see Weil (1999, p. 6) or Walker (1996, p. 3)).

23.8.5 η1=π22ω1(16+n=1csc2(nπω3ω1)),

with similar results for η2 and η3 obtainable by use of (23.2.14).

§23.8(iii) Infinite Products

23.8.6 σ(z)=2ω1πexp(η1z22ω1)sin(πz2ω1)n=112q2ncos(πz/ω1)+q4n(1q2n)2,
23.8.7 σ(z)=2ω1πexp(η1z22ω1)sin(πz2ω1)×n=1sin(π(2nω3+z)/(2ω1))sin(π(2nω3z)/(2ω1))sin2(πnω3/ω1).
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy