About the Project
26 Combinatorial AnalysisProperties

§26.7 Set Partitions: Bell Numbers

Contents
  1. §26.7(i) Definitions
  2. §26.7(ii) Generating Function
  3. §26.7(iii) Recurrence Relation
  4. §26.7(iv) Asymptotic Approximation

§26.7(i) Definitions

B(n) is the number of partitions of {1,2,,n}. For S(n,k) see §26.8(i).

26.7.1 B(0)=1,
26.7.2 B(n)=k=0nS(n,k),
26.7.3 B(n)=k=1mknk!j=0mk(1)jj!,
mn,
26.7.4 B(n)=e1k=1knk!=1+e1k=12nknk!.

See Table 26.7.1.

Table 26.7.1: Bell numbers.
n B(n) n B(n)
0 1 10 1 15975
1 1 11 6 78570
2 2 12 42 13597
3 5 13 276 44437
4 15 14 1908 99322
5 52 15 13829 58545
6 203 16 1 04801 42147
7 877 17 8 28648 69804
8 4140 18 68 20768 06159
9 21147 19 583 27422 05057

§26.7(ii) Generating Function

26.7.5 n=0B(n)xnn!=exp(ex1).

§26.7(iii) Recurrence Relation

26.7.6 B(n+1)=k=0n(nk)B(k).

§26.7(iv) Asymptotic Approximation

26.7.7 B(n)=NneNn1(1+lnN)1/2(1+O((lnn)1/2n1/2)),
n,

where

26.7.8 NlnN=n,

or, specifically, N=eW0(n), with properties of the Lambert W-function W0(n) given in §4.13. For higher approximations to B(n) as n see de Bruijn (1961, pp. 104–108).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy