About the Project
29 Lamé FunctionsLamé Functions

§29.2 Differential Equations

Contents
  1. §29.2(i) Lamé’s Equation
  2. §29.2(ii) Other Forms

§29.2(i) Lamé’s Equation

29.2.1 d2wdz2+(hν(ν+1)k2sn2(z,k))w=0,

where k and ν are real parameters such that 0<k<1 and ν12. For sn(z,k) see §22.2. This equation has regular singularities at the points 2pK+(2q+1)iK, where p,q, and K, K are the complete elliptic integrals of the first kind with moduli k, k(=(1k2)1/2), respectively; see §19.2(ii). In general, at each singularity each solution of (29.2.1) has a branch point (§2.7(i)). See Figure 29.2.1.

\begin{picture}(10.0,8.0)(-5.0,-4.0)\put(0.0,-4.0){\line(0,1){8.0}}
\put(-5.0,0.0){\line(1,0){10.0}}
\put(-4.17,-3.15){$\times$}\put(-2.17,-3.15){$\times$}\put(-0.17,-3.15){$%
\times$}\put(1.83,-3.15){$\times$}\put(3.83,-3.15){$\times$}
\put(-4.17,-1.15){$\times$}\put(-2.17,-1.15){$\times$}\put(-0.17,-1.15){$%
\times$}\put(1.83,-1.15){$\times$}\put(3.83,-1.15){$\times$}
\put(-4.17,0.85){$\times$}\put(-2.17,0.85){$\times$}\put(-0.17,0.85){$\times$}%
\put(1.83,0.85){$\times$}\put(3.83,0.85){$\times$}
\put(-4.17,2.85){$\times$}\put(-2.17,2.85){$\times$}\put(-0.17,2.85){$\times$}%
\put(1.83,2.85){$\times$}\put(3.83,2.85){$\times$}
{\put(-4.0,0.0){\line(0,1){0.15}}\put(-2.0,0.0){\line(0,1){0.15}}\put(0.0,0.0)%
{\line(0,1){0.15}}\put(2.0,0.0){\line(0,1){0.15}}\put(4.0,0.0){\line(0,1){0.15%
}}}
{\put(0.0,-2.0){\line(1,0){0.15}}\put(0.0,2.0){\line(1,0){0.15}}}
\put(0.1,0.1){0}
\put(-1.5,-3.15){$-3\iunit\ccompellintKk@@{k}$}
\put(-1.5,-2.15){$-2\iunit\ccompellintKk@@{k}$}
\put(-1.3,-1.15){$-\iunit\ccompellintKk@@{k}$}
\put(-0.9,0.85){$\iunit\ccompellintKk@@{k}$}
\put(-1.1,1.85){$2\iunit\ccompellintKk@@{k}$}
\put(-1.1,2.85){$3\iunit\ccompellintKk@@{k}$}
\put(-4.6,-0.5){$-4\compellintKk@@{k}$}
\put(-2.6,-0.5){$-2\compellintKk@@{k}$}
\put(1.8,-0.5){$2\compellintKk@@{k}$}
\put(3.8,-0.5){$4\compellintKk@@{k}$}
\end{picture}
Figure 29.2.1: z-plane: singularities ××× of Lamé’s equation. Magnify

§29.2(ii) Other Forms

29.2.2 d2wdξ2+12(1ξ+1ξ1+1ξk2)dwdξ+hk2ν(ν+1)ξ4ξ(ξ1)(ξk2)w=0,

where

29.2.3 ξ=sn2(z,k).
29.2.4 (1k2cos2ϕ)d2wdϕ2+k2cosϕsinϕdwdϕ+(hν(ν+1)k2cos2ϕ)w=0,

where

29.2.5 ϕ=12πam(z,k).

For am(z,k) see §22.16(i).

Next, let e1,e2,e3 be any real constants that satisfy e1>e2>e3 and

29.2.6 e1+e2+e3 =0,
(e2e3)/(e1e3) =k2.

(These constants are not unique.) Then with

29.2.7 g =(e1e3)h+ν(ν+1)e3,
29.2.8 η =(e1e3)1/2(ziK),

we have

29.2.9 d2wdη2+(gν(ν+1)(η))w=0,

and

29.2.10 d2wdζ2+12(1ζe1+1ζe2+1ζe3)dwdζ+gν(ν+1)ζ4(ζe1)(ζe2)(ζe3)w=0,

where

29.2.11 ζ=(η;g2,g3)=(η),

with

29.2.12 g2 =4(e2e3+e3e1+e1e2),
g3 =4e1e2e3.

For the Weierstrass function see §23.2(ii).

Equation (29.2.10) is a special case of Heun’s equation (31.2.1).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy