About the Project
36 Integrals with Coalescing SaddlesProperties

§36.11 Leading-Order Asymptotics

With real critical points (36.4.1) ordered so that

36.11.1 t1(𝐱)<t2(𝐱)<<tjmax(𝐱),

and far from the bifurcation set, the cuspoid canonical integrals are approximated by

36.11.2 ΨK(𝐱)=2πj=1jmax(𝐱)exp(i(ΦK(tj(𝐱);𝐱)+14π(1)j+K+1))×|2ΦK(tj(𝐱);𝐱)t2|1/2(1+o(1)).

Asymptotics along Symmetry Lines

36.11.3 Ψ2(0,y)={π/y(exp(14iπ)+o(1)),y+,π/|y|exp(14iπ)(1+i2exp(14iy2)+o(1)),y.
36.11.4 Ψ3(x,0,0) =2π(5|x|3)1/8{exp(22(x/5)5/4)(cos(22(x/5)5/418π)+o(1)),x+,cos(4(|x|/5)5/414π)+o(1),x.
36.11.5 Ψ3(0,y,0) =Ψ3(0,y,0)¯=exp(14iπ)π/y(1(i/3)exp(32i(2y/5)5/3)+o(1)),
y+.
36.11.6 Ψ3(0,0,z) =Γ(13)|z|1/33+{o(1),z+,2π51/4(3|z|)3/4(cos(23(3|z|5)5/214π)+o(1)),z.
36.11.7 Ψ(E)(0,0,z) =πz(i+3exp(427iz3)+o(1)),
z±,
36.11.8 Ψ(H)(0,0,z) =2πz(1i3exp(127iz3)+o(1)),
z±.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy