About the Project
4 Elementary FunctionsHyperbolic Functions

§4.35 Identities

Contents
  1. §4.35(i) Addition Formulas
  2. §4.35(ii) Squares and Products
  3. §4.35(iii) Multiples of the Argument
  4. §4.35(iv) Real and Imaginary Parts; Moduli

§4.35(i) Addition Formulas

4.35.1 sinh(u±v) =sinhucoshv±coshusinhv,
4.35.2 cosh(u±v) =coshucoshv±sinhusinhv,
4.35.3 tanh(u±v) =tanhu±tanhv1±tanhutanhv,
4.35.4 coth(u±v) =±cothucothv+1cothu±cothv.
4.35.5 sinhu+sinhv =2sinh(u+v2)cosh(uv2),
4.35.6 sinhusinhv =2cosh(u+v2)sinh(uv2),
4.35.7 coshu+coshv =2cosh(u+v2)cosh(uv2),
4.35.8 coshucoshv =2sinh(u+v2)sinh(uv2),
4.35.9 tanhu±tanhv =sinh(u±v)coshucoshv,
4.35.10 cothu±cothv =sinh(v±u)sinhusinhv.

§4.35(ii) Squares and Products

4.35.11 cosh2zsinh2z=1,
4.35.12 sech2z=1tanh2z,
4.35.13 csch2z=coth2z1.
4.35.14 2sinhusinhv =cosh(u+v)cosh(uv),
4.35.15 2coshucoshv =cosh(u+v)+cosh(uv),
4.35.16 2sinhucoshv =sinh(u+v)+sinh(uv).
4.35.17 sinh2usinh2v =sinh(u+v)sinh(uv),
4.35.18 cosh2ucosh2v =sinh(u+v)sinh(uv),
4.35.19 sinh2u+cosh2v =cosh(u+v)cosh(uv).

§4.35(iii) Multiples of the Argument

4.35.20 sinhz2=(coshz12)1/2,
4.35.21 coshz2=(coshz+12)1/2,
4.35.22 tanhz2=(coshz1coshz+1)1/2=coshz1sinhz=sinhzcoshz+1.

The square roots assume their principal value on the positive real axis, and are determined by continuity elsewhere.

4.35.23 sinh(z) =sinhz,
4.35.24 cosh(z) =coshz,
4.35.25 tanh(z) =tanhz.
4.35.26 sinh(2z)=2sinhzcoshz=2tanhz1tanh2z,
4.35.27 cosh(2z)=2cosh2z1=2sinh2z+1=cosh2z+sinh2z,
4.35.28 tanh(2z)=2tanhz1+tanh2z,
4.35.29 sinh(3z)=3sinhz+4sinh3z,
4.35.30 cosh(3z)=3coshz+4cosh3z,
4.35.31 sinh(4z) =4sinh3zcoshz+4cosh3zsinhz,
4.35.32 cosh(4z) =cosh4z+6sinh2zcosh2z+sinh4z.
4.35.33 cosh(nz)±sinh(nz)=(coshz±sinhz)n,
n.

§4.35(iv) Real and Imaginary Parts; Moduli

With z=x+iy

4.35.34 sinhz =sinhxcosy+icoshxsiny,
4.35.35 coshz =coshxcosy+isinhxsiny,
4.35.36 tanhz =sinh(2x)+isin(2y)cosh(2x)+cos(2y),
4.35.37 cothz =sinh(2x)isin(2y)cosh(2x)cos(2y).
4.35.38 |sinhz|=(sinh2x+sin2y)1/2=(12(cosh(2x)cos(2y)))1/2,
4.35.39 |coshz|=(sinh2x+cos2y)1/2=(12(cosh(2x)+cos(2y)))1/2,
4.35.40 |tanhz|=(cosh(2x)cos(2y)cosh(2x)+cos(2y))1/2.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy