About the Project
7 Error Functions, Dawson’s and Fresnel IntegralsProperties

§7.19 Voigt Functions

Contents
  1. §7.19(i) Definitions
  2. §7.19(ii) Graphics
  3. §7.19(iii) Properties
  4. §7.19(iv) Other Integral Representations

§7.19(i) Definitions

For x and t>0,

7.19.1 𝖴(x,t)=14πte(xy)2/(4t)1+y2dy,
7.19.2 𝖵(x,t)=14πtye(xy)2/(4t)1+y2dy.
7.19.3 𝖴(x,t)+i𝖵(x,t)=π4tez2erfcz,
z=(1ix)/(2t).
7.19.4 H(a,u)=aπet2dt(ut)2+a2=1aπ𝖴(ua,14a2).

H(a,u) is sometimes called the line broadening function; see, for example, Finn and Mugglestone (1965).

§7.19(ii) Graphics

See accompanying text
Figure 7.19.1: Voigt function 𝖴(x,t), t=0.1, 2.5, 5, 10. Magnify
See accompanying text
Figure 7.19.2: Voigt function 𝖵(x,t), t=0.1, 2.5, 5, 10. Magnify

§7.19(iii) Properties

7.19.5 limt0𝖴(x,t) =11+x2,
limt0𝖵(x,t) =x1+x2.
7.19.6 𝖴(x,t) =𝖴(x,t),
𝖵(x,t) =𝖵(x,t).
7.19.7 0 <𝖴(x,t)1,
1 𝖵(x,t)1.
7.19.8 𝖵(x,t) =x𝖴(x,t)+2t𝖴(x,t)x,
7.19.9 𝖴(x,t) =1x𝖵(x,t)2t𝖵(x,t)x.

§7.19(iv) Other Integral Representations

7.19.10 𝖴(ua,14a2)=a0eat14t2cos(ut)dt,
7.19.11 𝖵(ua,14a2)=a0eat14t2sin(ut)dt.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy