Skip to content

Forward Annotations

Forward annotations (wrapped in quotes) or using the from __future__ import annotations future statement (as introduced in PEP563) are supported:

from __future__ import annotations

from pydantic import BaseModel

MyInt = int


class Model(BaseModel):
    a: MyInt
    # Without the future import, equivalent to:
    # a: 'MyInt'


print(Model(a='1'))
#> a=1

As shown in the following sections, forward annotations are useful when you want to reference a type that is not yet defined in your code.

The internal logic to resolve forward annotations is described in detail in this section.

Self-referencing (or "Recursive") Models

Models with self-referencing fields are also supported. These annotations will be resolved during model creation.

Within the model, you can either add the from __future__ import annotations import or wrap the annotation in a string:

from typing import Optional

from pydantic import BaseModel


class Foo(BaseModel):
    a: int = 123
    sibling: 'Optional[Foo]' = None


print(Foo())
#> a=123 sibling=None
print(Foo(sibling={'a': '321'}))
#> a=123 sibling=Foo(a=321, sibling=None)

Cyclic references

When working with self-referencing recursive models, it is possible that you might encounter cyclic references in validation inputs. For example, this can happen when validating ORM instances with back-references from attributes.

Rather than raising a RecursionError while attempting to validate data with cyclic references, Pydantic is able to detect the cyclic reference and raise an appropriate ValidationError:

from typing import Optional

from pydantic import BaseModel, ValidationError


class ModelA(BaseModel):
    b: 'Optional[ModelB]' = None


class ModelB(BaseModel):
    a: Optional[ModelA] = None


cyclic_data = {}
cyclic_data['a'] = {'b': cyclic_data}
print(cyclic_data)
#> {'a': {'b': {...}}}

try:
    ModelB.model_validate(cyclic_data)
except ValidationError as exc:
    print(exc)
    """
    1 validation error for ModelB
    a.b
      Recursion error - cyclic reference detected [type=recursion_loop, input_value={'a': {'b': {...}}}, input_type=dict]
    """
from typing import Optional

from pydantic import BaseModel, ValidationError


class ModelA(BaseModel):
    b: 'Optional[ModelB]' = None


class ModelB(BaseModel):
    a: ModelA | None = None


cyclic_data = {}
cyclic_data['a'] = {'b': cyclic_data}
print(cyclic_data)
#> {'a': {'b': {...}}}

try:
    ModelB.model_validate(cyclic_data)
except ValidationError as exc:
    print(exc)
    """
    1 validation error for ModelB
    a.b
      Recursion error - cyclic reference detected [type=recursion_loop, input_value={'a': {'b': {...}}}, input_type=dict]
    """

Because this error is raised without actually exceeding the maximum recursion depth, you can catch and handle the raised ValidationError without needing to worry about the limited remaining recursion depth:

from contextlib import contextmanager
from dataclasses import field
from typing import Iterator

from pydantic import BaseModel, ValidationError, field_validator


def is_recursion_validation_error(exc: ValidationError) -> bool:
    errors = exc.errors()
    return len(errors) == 1 and errors[0]['type'] == 'recursion_loop'


@contextmanager
def suppress_recursion_validation_error() -> Iterator[None]:
    try:
        yield
    except ValidationError as exc:
        if not is_recursion_validation_error(exc):
            raise exc


class Node(BaseModel):
    id: int
    children: list['Node'] = field(default_factory=list)

    @field_validator('children', mode='wrap')
    @classmethod
    def drop_cyclic_references(cls, children, h):
        try:
            return h(children)
        except ValidationError as exc:
            if not (
                is_recursion_validation_error(exc)
                and isinstance(children, list)
            ):
                raise exc

            value_without_cyclic_refs = []
            for child in children:
                with suppress_recursion_validation_error():
                    value_without_cyclic_refs.extend(h([child]))
            return h(value_without_cyclic_refs)


# Create data with cyclic references representing the graph 1 -> 2 -> 3 -> 1
node_data = {'id': 1, 'children': [{'id': 2, 'children': [{'id': 3}]}]}
node_data['children'][0]['children'][0]['children'] = [node_data]

print(Node.model_validate(node_data))
#> id=1 children=[Node(id=2, children=[Node(id=3, children=[])])]
from contextlib import contextmanager
from dataclasses import field
from collections.abc import Iterator

from pydantic import BaseModel, ValidationError, field_validator


def is_recursion_validation_error(exc: ValidationError) -> bool:
    errors = exc.errors()
    return len(errors) == 1 and errors[0]['type'] == 'recursion_loop'


@contextmanager
def suppress_recursion_validation_error() -> Iterator[None]:
    try:
        yield
    except ValidationError as exc:
        if not is_recursion_validation_error(exc):
            raise exc


class Node(BaseModel):
    id: int
    children: list['Node'] = field(default_factory=list)

    @field_validator('children', mode='wrap')
    @classmethod
    def drop_cyclic_references(cls, children, h):
        try:
            return h(children)
        except ValidationError as exc:
            if not (
                is_recursion_validation_error(exc)
                and isinstance(children, list)
            ):
                raise exc

            value_without_cyclic_refs = []
            for child in children:
                with suppress_recursion_validation_error():
                    value_without_cyclic_refs.extend(h([child]))
            return h(value_without_cyclic_refs)


# Create data with cyclic references representing the graph 1 -> 2 -> 3 -> 1
node_data = {'id': 1, 'children': [{'id': 2, 'children': [{'id': 3}]}]}
node_data['children'][0]['children'][0]['children'] = [node_data]

print(Node.model_validate(node_data))
#> id=1 children=[Node(id=2, children=[Node(id=3, children=[])])]

Similarly, if Pydantic encounters a recursive reference during serialization, rather than waiting for the maximum recursion depth to be exceeded, a ValueError is raised immediately:

from pydantic import TypeAdapter

# Create data with cyclic references representing the graph 1 -> 2 -> 3 -> 1
node_data = {'id': 1, 'children': [{'id': 2, 'children': [{'id': 3}]}]}
node_data['children'][0]['children'][0]['children'] = [node_data]

try:
    # Try serializing the circular reference as JSON
    TypeAdapter(dict).dump_json(node_data)
except ValueError as exc:
    print(exc)
    """
    Error serializing to JSON: ValueError: Circular reference detected (id repeated)
    """

This can also be handled if desired:

from dataclasses import field
from typing import Any

from pydantic import (
    SerializerFunctionWrapHandler,
    TypeAdapter,
    field_serializer,
)
from pydantic.dataclasses import dataclass


@dataclass
class NodeReference:
    id: int


@dataclass
class Node(NodeReference):
    children: list['Node'] = field(default_factory=list)

    @field_serializer('children', mode='wrap')
    def serialize(
        self, children: list['Node'], handler: SerializerFunctionWrapHandler
    ) -> Any:
        """
        Serialize a list of nodes, handling circular references by excluding the children.
        """
        try:
            return handler(children)
        except ValueError as exc:
            if not str(exc).startswith('Circular reference'):
                raise exc

            result = []
            for node in children:
                try:
                    serialized = handler([node])
                except ValueError as exc:
                    if not str(exc).startswith('Circular reference'):
                        raise exc
                    result.append({'id': node.id})
                else:
                    result.append(serialized)
            return result


# Create a cyclic graph:
nodes = [Node(id=1), Node(id=2), Node(id=3)]
nodes[0].children.append(nodes[1])
nodes[1].children.append(nodes[2])
nodes[2].children.append(nodes[0])

print(nodes[0])
#> Node(id=1, children=[Node(id=2, children=[Node(id=3, children=[...])])])

# Serialize the cyclic graph:
print(TypeAdapter(Node).dump_python(nodes[0]))
"""
{
    'id': 1,
    'children': [{'id': 2, 'children': [{'id': 3, 'children': [{'id': 1}]}]}],
}
"""
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy