Abstract
This catalogue commences with sections devoted to a brief summary of Sturm-Liouville theory including some details of differential expressions and equations, Hilbert function spaces, differential operators, classification of interval endpoints, boundary condition functions and the Liouville transform.
There follows a collection of more than 50 examples of Sturm-Liouville differential equations; many of these examples are connected with well-known special functions, and with problems in mathematical physics and applied mathematics.
For most of these examples the interval endpoints are classified within the relevant Hilbert function space, and boundary condition functions are given to determine the domains of the relevant differential operators. In many cases the spectra of these operators are given.
The author is indebted to many colleagues who have responded to requests for examples and who checked successive drafts of the catalogue.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Dover Publications, Inc., New York, 1972.
N.I. Akhiezer and I.M. Glazmann, Theory of linear operators in Hilbert space: I and II, Pitman and Scottish Academic Press, London and Edinburgh, 1981.
R.A. Askey, T.H. Koornwinder and W. Schempp, Editors of Special functions: group theoretical aspects and applications, D. R.eidel Publishing Co., Dordrecht, 1984.
F.V. Atkinson, W.N. Everitt and A. Zettl, Regularization of a Sturm-Liouville problem with an interior singularity using quasi-derivatives, Diff. and Int. Equations 1 (1988), 213–222.
P.B. Bailey, SLEIGN: an eigenvalue-eigenfunction code for Sturm-Liouville prolems, Report Sand 77-2044, Sandia National Laboratory, New Mexico, USA, 1978.
P.B. Bailey, J. Billingham, R.J. Cooper, W.N. Everitt, A.C. King, Q. Kong, H. Wu and A. Zettl, Eigenvalue problems in fuel cell dynamics, Proc. Roy. Soc. London (A) 459 (2003), 241–261.
P.B. Bailey, W.N. Everitt, D.B. Hinton and A. Zettl, Some spectral properties of the Heun differential equation, Operator Theory: Advances and Applications 132 (2002), 87–110.
P.B. Bailey, W.N. Everitt and A. Zettl, Computing eigenvalues of singular Sturm-Liouville problems, Results in Mathematics 20 (1991), 391–423.
P.B. Bailey, W.N. Everitt and A. Zettl, Regular and singular Sturm-Liouville problems with coupled boundary conditions, Proc. Royal Soc. Edinburgh (A) 126 (1996), 505–514.
P.B. Bailey, W.N. Everitt and A. Zettl, The SLEIGN2 Sturm-Liouville code, ACM Trans. Math. Software 27 (2001), 143–192. This paper may also be downloaded as the LaTeX file bailey.tex from the web site: http://www.math.niu.edu/~zettl/SL2.
P.B. Bailey, W.N. Everitt and A. Zettl, The SLEIGN2 database, Web site: http://www.math.niu.edu/~zettl/SL2.
P.B. Bailey, W.N. Everitt, J. Weidmann and A. Zettl, Regular approximation of singular Sturm-Liouville problems, Results in Mathematics 23 (1993), 3–22.
V. Bargmann, Remarks on the determination of a central field of force from the elastic scattering phase shifts, Phys. Rev. 75 (1949), 301–303.
V. Bargmann, On the connection between phase shifts and scattering potential, Rev. Mod. Phys. 21 (1949), 488–493.
H. Behnke and F. Goerisch, Inclusions for eigenvalues of self-adjoint problems, in Topics in Validated Computation, J. Herzberger (Hrsg.), North Holland Elsevier, Amsterdam, 1994.
W.W. Bell, Special functions for scientists and engineers, Van Nostrand, London, 1968.
G. Birkhoff and G.-C. Rota, Ordinary differential equations, Wiley, New York, 1989.
J.P. Boyd, Sturm-Liouville eigenvalue problems with an interior pole, J. Math. Physics 22 (1981), 1575–1590.
A.G. Brusencev and F.S. Rofe-Beketov, Conditions for the selfadjointness of strongly elliptic systems of arbitrary order, Mt. Sb. (N.S.) 95(137) (1974), 108–129.
W. Bulla and F. Gesztesy, Deficiency indices and singular boundary conditions in quantum mechanics, J. Math. Phys. 26 (1985), 2520–2528.
K. Chadan and P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd ed., Springer, New York, 1989.
E.T. Copson, Theory of functions of a complex variable, Oxford University Press, Oxford, 1946.
P.A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), 267–310.
P. Deift and E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), 121–251.
N. Dunford and J.T. Schwartz, Linear Operators, part II, Interscience Publishers, New York, 1963.
M.S.P. Eastham, The spectral theory of periodic differential equations, Scottish Academic Press, Edinburgh and London, 1973.
A. Erdélyi, Higher transcendental functions: IL II and III, McGraw-Hill, New York, 1953.
W. D. Evans and W.N. Everitt, On an inequality of Hardy-Littlewood type: I, Proc. Royal Soc. Edinburgh (A) 101 (1985), 131–140.
W.D. Evans, W.N. Everitt, W.K. Hayman and D.S. Jones, Five integral inequalities: an inheritance from Hardy and Littlewood, Journal of Inequalities and Applications 2 (1998), 1–36.
W.N. Everitt, On the transformation theory of ordinary second-order linear symmetric differential equations, Czechoslovak Mathematical Journal 32(107) (1982), 275–306.
W.N. Everitt, J. Gunson and A. Zettl, Some comments on Sturm-Liouville eigenvalue problems with interior singularities, J. Appl. Math. Phys. (ZAMP) 38 (1987), 813–838.
W.N. Everitt and D.S. Jones, On an integral inequality, Proc. Royal Soc. London (A) 357 (1977), 271–288.
W.N. Everitt and C. Market, On a generalization of Bessel functions satisfying higher-order differential equations, Jour. Comp. Appl. Math. 54 (1994), 325–349.
W.N. Everitt and L. Markus, Boundary value problems and symplectic algebra for ordinary and quasi-differential operators, Mathematical Surveys and Monographs 61, American Mathematical Society, RI, USA, 1999.
W.N. Everitt and A. Zettl, On a class of integral inequalities, J. London Math. Soc. (2) 17 (1978), 291–303.
G. Fichera, Numerical and quantitative analysis, Pitman Press, London, 1978.
M. Flendsted-Jensen and T. Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973), 245–262.
C.T. Fulton and S. Pruess, Mathematical software for Sturm-Liouville problems, NSF Final Report for Grants DMS88 and DMS88-00839, 1993.
C.S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Korteweg-deVries equation and generalizations, VI. Methods for exact solution, Comm. Pure Appl. Math. 27 (1974), 97–133.
F. Gesztesy and H. Holden, Soliton equations and their algebro-geometric solutions. Vol. I: (1+1)-dimensional continuous models, Cambridge Studies in Advanced Mathematics 79, Cambridge University Press, 2003.
F. Gesztesy, W. Karwowski and Z. Zhao, Limits of soliton solutions, Duke Math. J. 68 (1992), 101–150.
F. Gesztesy and B. Simon, A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure, Ann. Math. 152 (2000), 593–643.
F. Gesztesy and M. Ünal, Perturbative oscillation criteria and Hardy-type inequalities, Math. Nach. 189 (1998), 121–144.
F. Gesztesy and R. Weikard, Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies — an analytic approach, Bull. Amer. Math. Soc. 35 (1998), 271–317.
H. Hochstadt, A special Hill’s equation with discontinuous coefficients, Amer. Math. Monthly 70 (1963), 18–26.
H. Hochstadt, The functions of mathematical physics, Wiley-Interscience, New York, 1971.
M.S. Homer, Boundary value problems for the Laplace tidal wave equation, Proc. Roy. Soc. of London (A) 428 (1990), 157–180.
E.L. Ince, Ordinary differential equations, Dover, New York, 1956.
K. Jörgens, Spectral theory of second-order ordinary differential operators, Lecture Notes: Series no. 2, Matematisk Institut, Aarhus Universitet, 1962/63.
K. Jörgens and F. Rellich, Eigenwerttheorie gewöhnlicher Differentialgleichungen, Springer-Verlag, Heidelberg, 1976.
I. Kay and H.E. Moses, Reflectionless transmission through dielectrics and scattering potentials, J. Appl. Phys. 27 (1956), 1503–1508.
E. Kamke, Differentialgleichungen: Lösungsmethoden and Lösungen: Gewdöhnliche Differentialgleichungen, 3rd edition, Chelsea Publishing Company, New York, 1948.
T.H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, in Special functions: group theoretical aspects and applications, 1–85, edited by R.A. Askey, T.H. Koornwinder and W. Schempp, D. Reidel Publishing Co., Dordrecht, 1984.
A.M. Krall, Boundary value problems for an eigenvalue problem with a singular potential, J. Diff. Equations 45 (1982), 128–138.
W. Lay and S. Yu. Slavyanov, Heun’s equation with nearby singularities, Proc. R. Soc. Lond. A 455 (1999), 4347–4361.
J.E. Littlewood, On linear differential equations of the second order with a strongly oscillating coefficient of y, J. London Math. Soc. 41 (1966), 627–638.
R.J. Lohner, Verified solution of eigenvalue problems in ordinary differential equations, personal communication, 1995.
J. Lützen, Sturm and Liouville’s work on ordinary linear differential equations. The emergence of Sturm-Liouville theory, Arch. Hist. Exact Sci. 29 (1984), 309–376.
L. Markus and R..A. Moore, Oscillation and disconjugacy for linear differential equations with almost periodic coefficients, Acta. Math. 96 (1956), 99–123.
M. Marletta, Numerical tests of the SLEIGN software for Sturm-Liouville problems, ACM Trans. Math. Software 17 (1991), 501–503.
J.B. McLeod, Some examples of wildly oscillating potentials, J. London Math. Soc. 43 (1968), 647–654.
P.M. Morse, Diatomic molecules according to the wave mechanics II: Vibration levels, Phys. Rev. 34 (1929), 57–61.
M.A. Naimark, Linear differential operators: II, Ungar Publishing Company, New York, 1968.
H. Narnhofer, Quantum theory for 1/r2-potentials, Acta Phys. Austriaca 40 (1974), 306–322.
H.-D. Niessen and A. Zettl, Singular Sturm-Liouville problems; the Friedrichs extension and comparison of eigenvalues, Proc. London Math. Soc. 64 (1992), 545–578.
L. Pastur and A. Figotin, Spectra of random and almost-periodic operators, Springer, Berlin, 1992.
E.G.P. Poole, Introduction to the theory of linear differential equations, Oxford University Press, 1936.
S. Pruess, C.T. Fulton and Y. Xie, Performance of the Sturm-Liouville software package SLEDGE, Technical Report MCS-91-19, Department of Mathematical and Computer Sciences, Colorado School of Mines, USA, 1994.
J.D. Pryce, Numerical solution of Sturm-Liouville problems, Oxford University Press, 1993.
J.D. Pryce, A test package for Sturm-Liouville solvers, ACM Trans. Math. Software 25 (1999), 21–57.
M. Plum, Eigenvalue inclusions for second-order ordinary differential operators by a numerical homotopy method, ZAMP 41 (1990), 205–226.
F. Rellich, Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der mathematischen Physik, (Gewöhnliche Differentialgleichungen zweiter Ordnung), Math. Z. 49 (1944), 702–723.
F.S. Rofe-Beketov, Non-semibounded differential operators. Teor. FunkciÄ Funkcional. Anal. i Prilozen. Vyp. 2 (1966), 178–184.
A. Ronveaux, Heun differential equations, Oxford University Press, 1995.
D.B. Sears and E.C. Titchmarsh, Some eigenfunction formulae, Quart. J. Math. Oxford (2) 1 (1950), 165–175.
J.K. Shaw, A.P. Baronavski and H.D. Ladouceur, Applications of the Walker method, in Spectral Theory and Computational Methods of Sturm-Liouville problems, 377–395, Lecture Notes in Pure and Applied Mathematics 191, Marcel Dekker, Inc., New York, 1997.
S. Yu. Slavyanov and W. Lay, Special functions: a unified theory based on singularities, Oxford University Press, 2000.
C. Sturm and J. Liouville, Extrait d’un Mémoire sur le développement des fonctions en séries dont les différents termes sont assujettis à satisfaire à une même équation différentielle linéaire, contenant un paramètre variable, J. Math. Pures Appl. 2 (1837), 220–223.
E.C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations I, Clarendon Press, Oxford, 1962.
G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, England, 1958.
E.T. Whittaker and G.N. Watson, Modern analysis, Cambridge University Press, 1950.
A. Zettl, Computing continuous spectrum, in Trends and Developments in Ordinary Differential Equations, 393–406, Y. Alavi and P. Hsieh editors, World Scientific, 1994.
A. Zettl, Sturm-Liouville problems, in Spectral Theory and Computational Methods of Sturm-Liouville problems, 1–104, Lecture Notes in Pure and Applied Mathematics 191, Marcel Dekker, Inc., New York, 1997.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Birkhäuser Verlag Basel/Switzerland
About this chapter
Cite this chapter
Everitt, W.N. (2005). A Catalogue of Sturm-Liouville Differential Equations. In: Amrein, W.O., Hinz, A.M., Pearson, D.P. (eds) Sturm-Liouville Theory. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7359-8_12
Download citation
DOI: https://doi.org/10.1007/3-7643-7359-8_12
Publisher Name: Birkhäuser Basel
Print ISBN: 978-3-7643-7066-4
Online ISBN: 978-3-7643-7359-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)