Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T07:08:13.588Z Has data issue: false hasContentIssue false

Local isotropy in turbulent boundary layers at high Reynolds number

Published online by Cambridge University Press:  26 April 2006

Seyed G. Saddoughi
Affiliation:
Center for Turbulence Research, Bldg 500, Stanford University, CA 94305, USA and NASA Ames Research Center, CA 94035, USA.
Srinivas V. Veeravalli
Affiliation:
Center for Turbulence Research, Bldg 500, Stanford University, CA 94305, USA and NASA Ames Research Center, CA 94035, USA. Present address: Department of Applied Mechanics, Indian Institute of Technology, New Delhi 110016, India.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. & Kim, J. 1992 Isotropy of small-scale turbulence. Proc. Summer Program of the Center for Turbulence Research, Stanford.
Antonia, R. A., Kim, J. & Browne, L. W. B. 1991 Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369388.Google Scholar
Antonia, R. A., Teitel, M., Kim, J. & Browne, L. W. B. 1992 Low Reynolds number effects in a fully developed turbulent channel flow. J. Fluid Mech. 236, 579605.Google Scholar
Batchelor, G. K. 1946 The theory of axisymmetric turbulence. Proc. R. Soc. Lond. A 186, 480502.Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Bendat, J. S. & Piersol, A. G. 1986 Random Data Analysis and Measurement Procedures. John Wiley & Sons.
Bradshaw, P. 1971 An Introduction to Turbulence and its Measurement. Pergamon.
Bradshaw, P. 1973 Effects of streamline curvature on turbulent flow. AGARDograph 169.Google Scholar
Brasseur, J. G. 1991 Comments on the Kolmogorov hypothesis of isotropy in the small scales. Paper AIAA-91-0230; 29th Aerospace Sciences Meeting, January 7–10, 1991, Reno, Nevada.
Browne, L. W. B., Antonia, A. A. & Shah, D. A. 1987 Turbulent energy dissipation in a wake. J. Fluid Mech. 179, 307326.Google Scholar
Caughey, S. J., Wyngaard, J. C. & Kaimal, J. C. 1979 Turbulence in the evolving stable boundary layer. J. Atmos. Sci. 36, 10411052.Google Scholar
Champagne, F. H. 1978 The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86, 67108.Google Scholar
Champagne, F. H., Friehe, C. A., La Rue, J. C. & Wyngaard, J. C. 1977 Flux measurements, flux estimation techniques and fine scale turbulent measurements in the surface layer over land. J. Atmos. Sci. 34, 515530.Google Scholar
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41, 81139.Google Scholar
Chandrasekhar, S. 1950 The theory of axisymmetric turbulence. Proc. R. Soc. Lond. A 242, 557577.Google Scholar
Chapman, D. 1979 Computational aerodynamics development and outlook. AIAAJ. 17, 12931313.Google Scholar
Chen, S., Doolen, G., Herring, J. R., Kraichnan, R. H., Orszag, S. A. & Zhen, S. S. 1993 Far dissipation range of turbulence. Phys. Rev. Lett. 70, 3051.Google Scholar
Coantic, M. & Favre, A. 1974 Activities in, and preliminary results of, air-sea interactions research at I.M.S.T. Adv. Geophys. 18A, 391405.Google Scholar
Comte-Bellot, G. & Corrsin, S. 1971 Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated ‘isotropic’ turbulence. J. Fluid Mech. 48, 273337.Google Scholar
Corrsin, S. 1958 On local isotropy in turbulent shear flow. NACA R & M 58B11.
Domaradzki, A. J. & Rogallo, R. S. 1988 Energy transfer in isotropic turbulence at low Reynolds numbers. Proc. Summer Program of the Center for Turbulence Research, CTR-S88, pp. 169177. Center for Turbulence Research, Stanford University/NASA Ames.
Domaradzki, A. J., Rogallo, R. S. & Wray, A. A. 1990 Interscale energy transfer in numerically simulated homogeneous turbulence. Proc. Summer Program of the Center for Turbulence Research, CTR-S90, pp. 319329. Center for Turbulence Research, Stanford University/NASA Ames.
Durbin, P. A. & Speziale, C. G. 1991 Local anisotropy in strained turbulence at high Reynolds numbers. Recent Advances in Mechanics of Structured Continua, vol. 117, p. 29.
Ewing, D. W. & George, W. K. 1992 Spatial resolution of multi-wire probes. 45th Annual Meeting of the Fluid Dynamics Division of the American Physical Society, Tallahassee, vol. 37, No. 8.
George, W. K. & Hussein, H. J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233, 123.Google Scholar
Gibson, M. M. 1963 Spectra of turbulence in a round jet. J. Fluid Mech. 15, 161173.Google Scholar
Grant, H. L. & Moilliet, A. 1962 The spectrum of a cross-stream component of turbulence in a tidal stream. J. Fluid Mech. 13, 237240.Google Scholar
Grant, H. L., Stewart, R. W. & Moilliet, A. 1962 Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241268.Google Scholar
Henbest, S. M., Li, J. D. & Perry, A. E. 1992 Turbulence spectra in the near-wall region. Proc. 11th Australasian Fluid Mech. Conf., Univ. of Tasmania, Australia.
Hinze, J. O. 1975 Turbulence. McGraw-Hill.
Hunt, J. C. R., Phillips, O. M. & Williams, D. 1991 Turbulence and stochastic processes: Kolmogorov's ideas 50 years on. Proc. R. Soc. Lond. A 434.Google Scholar
Karyakin, M. Y., Kuznetsov, V. R. & Praskovsky, A. A. 1991 Izv. Adad. Nauk SSSR, Mech. Zhidk. i Gaza 5, 5159.
Kerr, R. M. 1990 Velocity, scalar and transfer of spectra in numerical turbulence. J. Fluid Mech. 211, 309332.Google Scholar
Kida, S., Kraichnan, R. H., Rogallo, R. S., Waleffe, F. & Zhou, Y. 1992 Triad interactions in the dissipation range. Proc. Summer Program of the Center for Turbulence Research, CTR-S92, pp. 8399. Center for Turbulence Research, Stanford University/NASA Ames.
Kida, S. & Murakami, Y. 1987 Kolmogorov similarity in freely decaying turbulence. Phys. Fluids A 30, 20302039.Google Scholar
Kim, J. & Hussain, F. 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A 5, 695706.Google Scholar
Kistler, A. L. & Vrebalovich, T. 1966 Grid turbulence at large Reynolds numbers. J. Fluid. Mech. 26, 3747.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci URSS 30, 301.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.Google Scholar
Kraichnan, R. H. 1959 The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497543.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.
Laufer, J. 1954 The structure of turbulence in fully developed pipe flow. NACA Rep. 1174.
Lee, M. J., Kim, J. & Moin, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561583.Google Scholar
Ligrani, P. M. & Bradshaw, P. 1987 Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exps Fluids. 5, 407417.Google Scholar
Lumley, J. L. 1965 Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids. 8, 10561062.Google Scholar
Lumley, J. L. 1967 Similarity and the turbulent energy spectrum. Phys. Fluids. 10, 855858.Google Scholar
Mestayer, P. 1982 Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475503.Google Scholar
Mestayer, P., Chollet, J. P. & Lesieur, M. 1983 Inertial subrange of velocity and scalar variance spectra in high-Reynolds-number three-dimensional turbulence. In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), p. 285. Elsevier.
Moin, P. 1990 Similarity of organized structures in turbulent shear flows. In Near-Wall Turbulence (ed. S. J. Kline & N. H. Afgan), p. 2. Hemisphere.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, Vol. 2. MIT Press.
Morrison, J. F., Subramanian, C. S. & Bradshaw, P. 1992 Bursts and the law of the wall in turbulent boundary layers. J. Fluid Mech. 241, 75108.Google Scholar
Nelkin, M. & Nakano, T. 1983 How do the small scales become isotropic in Navier-Stokes turbulence. In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), p. 319. Elsevier.
Onsager, L. 1949 Statistical hydrodynamics. Nuovo Cimento 6, suppl. 2, 279287.Google Scholar
Pao, Y. H. 1965 Structure of turbulent velocity and scalar fields at large wave numbers. Phys. Fluids 8, 10631075.Google Scholar
Perry, A. E. 1982 Hot-Wire Anemometry. Clarendon.
Perry, A. E. & Joubert, P. N. 1963 Rough wall boundary layers in adverse pressure gradients. J. Fluid Mech. 17, 193211.Google Scholar
Perry, A. E. & Li, J. D. 1990 Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech. 218, 405438.Google Scholar
Piomelli, U., Balint, J. L. & Wallace, J. M. 1989 On the validity of Taylor's hypothesis for wallbounded turbulent flows. Phys. Fluids A 1, 609611.Google Scholar
Pond, S., Phelps, G. T., Paquin, J. E., McBean, G. & Stewart, R. W. 1971 Measurements of the turbulent fluxes of momentum, moisture, and sensible heat over the ocean. J. Atmos. Sci. 28, 901917.Google Scholar
Saddoughi, S. G. 1992 Local isotropy in high Reynolds number turbulent shear flows. Annual Research Briefs of the Center for Turbulence Research, pp. 237262. Stanford University/NASA Ames.
Sanada, T. 1992 Comment on the dissipation-range spectrum in turbulent flows. Phys. Fluids A 4, 10861087.Google Scholar
Sanborn, V. A. & Marshall, R. D. 1965 Local isotropy in wind tunnel turbulence. Colorado State Univ. Rep. CER 65 UAS-RDM71.
Sreenivasan, K. R. 1985 On the fine-scale intermittency of turbulence. J. Fluid Mech. 151, 81103.Google Scholar
Sreenivasan, K. R. 1991 On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond A 434, 165182.Google Scholar
Taylor, G. I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421.Google Scholar
Tieleman, H. W. 1967 Viscous region of turbulent boundary layer. Colorado State Univ. Rep. CER 67–68 HWT21.
Townsend, A. A. 1948 Local isotropy in the turbulent wake of a cylinder. Austral. J. Sci. Res. 2, 161174.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Uberoi, M. S. 1957 Equipartition of energy and local isotropy in turbulent flows. J. Appl. Phys. 28, 11651170.Google Scholar
Uberoi, M. S. & Freymuth, P. 1969 Spectra of turbulence in wakes behind circular cylinders. Phys Fluids A 12, 13591363.Google Scholar
Van Atta, C. 1991 Local isotropy of the smallest scales of turbulent scalar and velocity fields. Proc. R. Soc. Lond. A 434, 139147.Google Scholar
Veeravalli, S. V. & Saddoughi, S. G. 1991 A preliminary experimental investigation of local isotropy in high-Reynolds-number turbulence. Annual Research Briefs of the Center for Turbulence Research, pp. 320. Stanford University/NASA Ames.
Waleffe, F. 1991 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4, 350363.Google Scholar
Williams, R. N. & Paulson, C. A. 1978 Microscale temperature and velocity spectra in the atmospheric boundary layer. J. Fluid Mech. 83, 547567.Google Scholar
Wyngaard, J. C. 1968 Measurements of small-scale turbulence structure with hot wires. J. Sci. Instrum. 1, 11051108.Google Scholar
Wyngaard, J. C. & Clifford, S. F. 1977 Taylor's hypothesis and high-frequency turbulence spectra. J. Atmos. Sci. 34, 922929.Google Scholar
Wyngaard, J. C. & Cote, O. R. 1972 Co-spectral similarity in the atmospheric surface layer. Q. J. R. Met. Soc. 98, 590603.Google Scholar
Yeung, P. K. & Brasseur, J. G. 1991 The response of isotropic turbulence to isotropic and anisotropic forcing at the large scales. Phys. Fluids A 3, 884897.Google Scholar