Path Planning of a Mobile Robot Based on the Improved RRT Algorithm
Abstract
:1. Introduction
2. Background
2.1. Problem Definition
2.2. Basic RRT Algorithm
Algorithm 1. RRT |
Input: xinit, xgoal and Map Output: A feasible path η from xinit to xgoal 1: Tree.init() 2: for i = 1 to N do 3: xrand ← UniformSample(Map) 4: xnear ← Near(xrand, Tree) 5: xnew ← Steer(xrand, xnear, λ) 6: if CollisionFree(xnear, xnew, Map) then 7: Tree.AddNode(xnew) 8: Tree.AddEdge(xnear, xnew) 9: if xnew ∈ Xgoal then 10: return η 11: end 12: end 13: end |
3. Methods
Algorithm 2. APSD-RRT |
Input: xinit, xgoal and Map Output: A path η* from xinit to xgoal 1: Map.init 2: ηinit ← Planner(xinit, xgoal, Map) 3: if ηinit exist then 4: η* ← Optimizer(ηinit) 5: else 6: return Failure 7: end |
3.1. APS-RRT Planner
Algorithm 3. Planner |
Input: xinit, xgoal and Map; Output: A feasible path ηinit from xinit to xgoal 1: Tree.init() 2: for i = 1 to N do 3: xrand ← AP(Map) 4: xnear ← Near(xrand, Tree) 5: xnew ← Steer(xrand, xnear, λ) 6: if CollisionFree(xnear, xnew, Map) then 7: Tree.AddNode(xnew) 8: Tree.AddEdge(xnear, xnew) 9: if xnew ∈ Xgoal then 10: return ηinit 11: end 12: if flag ! = 2 then 13: Map ← AS(xnew, Map) 14: end 15: end 16: if CannotFindAreaSolution then 17: Tree ← FailSample(Tree, Map) 18: end 19: end |
3.1.1. Adjustable Probability Strategy
Algorithm 4. AP |
Input: Map Output: xrand 1: p = pmin + (pmax − pmin) × (nsuccess/nfail + nsuccess) 2: if Rand(0,1) > p then 3: xrand ← UniformSample(Map) 4: else 5: xrand ← xgoal 6: end |
3.1.2. Adjustable Sampling Area Strategy
Algorithm 5. AS |
Input: xnew, Map Output: Map, flag 1: if xnew ∈ S\M then 2: Map ← S, flag ← 0 3: else if xnew ∈ M\T then 4: Map ← M, flag ← 1 5: else 6: Map ← T, flag ← 2 7: end |
3.2. Optimizer
Algorithm 6. Optimizer |
Input: ηinit Output: an optimized path η* 1: Value.init 2: η* ← DijkstraPruning(ηinit,Value) 3: if Angle(η*) < threshold then 4: Index ← Angle(η*) 5: η* ← Interpolation(Index, η*) 6: end |
3.2.1. Dijkstra Pruning
Algorithm 7. Dijkstra Pruning |
Input: ηinit,Value Output: an optimized path η* 1: Visit.init, Path.init, Dis.init 2: for k = 1 to n − 1 do 3: i ← min(Dis) 4: Visit[i] ← True 5: for j = 1 to n do 6: if Dis[j] > Dis[i] + Value(i,j) then 7: Dis[j] ← Dis[i] + Value(i,j) 8: Path[j] ← i 9: end 10: end 11: end 12: η* ← Path |
3.2.2. Interpolation
Algorithm 8. Interpolation |
Input: Index, η* Output: an optimized path η* 1: for i = 1 to size(Index) do 2: Ɵ1 ← GetAngle(Index) 3: a ← GetMid(x1, x2) 4: b ← GetMid(x2, x3) 5: if CollisionFree(a, b, Map) then 6 if Ɵ2,Ɵ3 > threshold then 7: η*.delete() 8: η*.insert() 9: else 10: N ← GetNode(max(Ɵ2,Ɵ3)) 11: E ← GetEdge(min(Ɵ2,Ɵ3)) 12: M ← GetMid(E) 13: go to line 5 14: end 15: else 16: go to line 3 17: end 18: end |
4. Simulation and Analysis
4.1. Simulation of Fast Planning
4.2. Simulation of Path Optimization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zafar, M.N.; Mohanta, J. Methodology for path planning and optimization of mobile robots: A review. Procedia Comput. Sci. 2018, 133, 141–152. [Google Scholar] [CrossRef]
- Sánchez-Ibáñez, J.R.; Pérez-del-Pulgar, C.J.; García-Cerezo, A. Path planning for autonomous mobile robots: A review. Sensors 2021, 21, 7898. [Google Scholar] [CrossRef]
- Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions. Electronics 2021, 10, 2250. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98. [Google Scholar] [CrossRef]
- Potvin, J.-Y. Genetic algorithms for the traveling salesman problem. Ann. Oper. Res. 1996, 63, 337–370. [Google Scholar] [CrossRef]
- Ismail, A.; Sheta, A.; Al-Weshah, M. A mobile robot path planning using genetic algorithm in static environment. J. Comput. Sci. 2008, 4, 341–344. [Google Scholar]
- Kavraki, L.E.; Svestka, P.; Latombe, J.-C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef]
- LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning, TR 98-11; Department of Computer Science, Iowa State University: Ames, IA, USA, 1998. [Google Scholar]
- Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [Google Scholar] [CrossRef]
- Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004. [Google Scholar]
- Nasir, J.; Islam, F.; Malik, U.; Ayaz, Y.; Hasan, O.; Khan, M.; Muhammad, M.S. RRT*-SMART: A rapid convergence implementation of RRT. Int. J. Adv. Robot. Syst. 2013, 10, 299. [Google Scholar] [CrossRef]
- Wu, Z.; Meng, Z.; Zhao, W.; Wu, Z. Fast-RRT: A RRT-based optimal path finding method. Appl. Sci. 2021, 11, 11777. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Y.; Zhang, M.; Yang, H. APSO: An A*-PSO hybrid algorithm for mobile robot path planning. IEEE Access 2023, 11, 43238–43256. [Google Scholar] [CrossRef]
- Cao, X.; Zou, X.; Jia, C.; Chen, M.; Zeng, Z. RRT-based path planning for an intelligent litchi-picking manipulator. Comput. Electron. Agric. 2019, 156, 105–118. [Google Scholar] [CrossRef]
- Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA, 24–28 April 2000; pp. 995–1001. [Google Scholar]
- Urmson, C.; Simmons, R. Approaches for heuristically biasing RRT growth. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA, 27–31 October 2003; pp. 1178–1183. [Google Scholar]
- Gan, Y.; Zhang, B.; Ke, C.; Zhu, X.; He, W.; Ihara, T. Research on robot motion planning based on RRT algorithm with nonholonomic constraints. Neural Process. Lett. 2021, 53, 3011–3029. [Google Scholar] [CrossRef]
- Chai, Q.; Wang, Y. RJ-RRT: Improved RRT for Path Planning in Narrow Passages. Appl. Sci. 2022, 12, 12033. [Google Scholar] [CrossRef]
- Huang, S. Path planning based on mixed algorithm of RRT and artificial potential field method. In Proceedings of the 2021 4th International Conference on Intelligent Robotics and Control Engineering (IRCE), Lanzhou, China, 18–20 September 2021; pp. 149–155. [Google Scholar]
- Wang, J.; Meng, M.Q.-H. Optimal path planning using generalized voronoi graph and multiple potential functions. IEEE Trans. Ind. Electron. 2020, 67, 10621–10630. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, C.; Zhang, Y.; Li, X.; Sun, L. A neural network-based navigation approach for autonomous mobile robot systems. Appl. Sci. 2022, 12, 7796. [Google Scholar] [CrossRef]
- Ichter, B.; Harrison, J.; Pavone, M. Learning sampling distributions for robot motion planning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7087–7094. [Google Scholar]
- Li, Y.; Cui, R.; Li, Z.; Xu, D. Neural network approximation based near-optimal motion planning with kinodynamic constraints using RRT. IEEE Trans. Ind. Electron. 2018, 65, 8718–8729. [Google Scholar] [CrossRef]
- Wang, J.; Chi, W.; Li, C.; Wang, C.; Meng, M.Q.-H. Neural RRT*: Learning-based optimal path planning. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1748–1758. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, D.; Wang, Y.; Lu, M.; Li, R. EGNN: Graph structure learning based on evolutionary computation helps more in graph neural networks. Appl. Soft Comput. 2023, 135, 110040. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
λ, r | 30 |
pmax | 0.9 |
pmin | 0.1 |
threshold | 100 |
Maximum iteration | 3000 |
Environment | Algorithm | Time (s) | Std | Nodes (n) | Std | Success Rate |
---|---|---|---|---|---|---|
Map1 | RRT | 0.21 | 0.05 | 141.72 | 37.97 | 1 |
Bias-RRT (p = 0.5) | 0.15 | 0.03 | 75.84 | 19.87 | 1 | |
APS-RRT | 0.09 | 0.02 | 40.5 | 7.95 | 1 | |
Map2 | RRT | 0.23 | 0.11 | 176.9 | 81.02 | 1 |
Bias-RRT (p = 0.5) | 0.23 | 0.15 | 136.7 | 83.41 | 1 | |
APS-RRT | 0.1 | 0.02 | 50.64 | 12.14 | 1 | |
Map3 | RRT | 0.72 | 0.6 | 466.23 | 277.57 | 0.96 |
Bias-RRT (p = 0.5) | 0.64 | 0.51 | 338.82 | 209.68 | 0.88 | |
APS-RRT | 0.13 | 0.06 | 80.98 | 43.19 | 1 | |
Map4 | RRT | 0.34 | 0.36 | 213.88 | 143.34 | 0.68 |
Bias-RRT (p = 0.5) | 0.32 | 0.17 | 165.23 | 71.59 | 0.6 | |
APS-RRT | 0.17 | 0.14 | 76.95 | 51.37 | 0.88 |
Environment | Algorithm | IPL (m) | Std | IT (s) | FPL (m) | Std | FT (s) | Nodes (n) |
---|---|---|---|---|---|---|---|---|
Map1 | RRT | 919.42 | 63.83 | 0.21 | 919.42 | 63.83 | 0.21 | 141.72 |
RRT* | 843.29 | 30.51 | 0.28 | 750.91 | 8.62 | 9.68 | 1411.96 | |
APSD-RRT | 832.89 | 33.5 | 0.09 | 754.24 | 14.37 | 0.13 | 40.5 | |
Map2 | RRT | 906.23 | 96.95 | 0.23 | 906.23 | 96.95 | 0.23 | 176.9 |
RRT* | 830.46 | 62.36 | 0.31 | 680.49 | 8.95 | 8.28 | 1295.06 | |
APSD-RRT | 848.91 | 72.7 | 0.1 | 734.83 | 47.09 | 0.14 | 50.64 | |
Map3 | RRT | 847.07 | 50.34 | 0.72 | 847.07 | 50.34 | 0.72 | 466.23 |
RRT* | 742.39 | 41.51 | 1.33 | 666.48 | 12.69 | 11.87 | 1661.47 | |
APSD-RRT | 779.44 | 56.94 | 0.13 | 671.78 | 9.46 | 0.17 | 80.98 | |
Map4 | RRT | 825.07 | 56.41 | 0.34 | 825.07 | 56.41 | 0.34 | 143.34 |
RRT* | 733.8 | 29.99 | 0.78 | 693.19 | 15.32 | 5.51 | 960.5 | |
APSD-RRT | 797.78 | 61.31 | 0.17 | 674.35 | 8.44 | 0.22 | 76.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tong, Y. Path Planning of a Mobile Robot Based on the Improved RRT Algorithm. Appl. Sci. 2024, 14, 25. https://doi.org/10.3390/app14010025
Li X, Tong Y. Path Planning of a Mobile Robot Based on the Improved RRT Algorithm. Applied Sciences. 2024; 14(1):25. https://doi.org/10.3390/app14010025
Chicago/Turabian StyleLi, Xiangjie, and Yala Tong. 2024. "Path Planning of a Mobile Robot Based on the Improved RRT Algorithm" Applied Sciences 14, no. 1: 25. https://doi.org/10.3390/app14010025
APA StyleLi, X., & Tong, Y. (2024). Path Planning of a Mobile Robot Based on the Improved RRT Algorithm. Applied Sciences, 14(1), 25. https://doi.org/10.3390/app14010025