Path Planning of Obstacle-Crossing Robot Based on Golden Sine Grey Wolf Optimizer
Abstract
:1. Introduction
2. Grey Wolf Optimizer
3. Golden Sine Grey Wolf Optimizer
3.1. Piecewise Linear Chaotic Map
3.2. Nonlinear Convergence Factor
3.3. Dynamic Weight Coefficient
3.4. Golden Sine Strategy
3.5. Logic and Process of Algorithm
Algorithm 1: Golden Sine Grey Wolf Optimizer (GSGWO) |
Input: , , , , , |
Output: |
1: Initialize , and wolf; |
2: Initialize |
3: for = 1 to |
4: Calculate with Equation (9); |
5: for = 1 to |
6: Update the location with Equations (10) and (11); |
7: if |
8: Perform secondary convergence with Equations (12) and (13); |
9: end |
10: end |
11: Update α, β and δ wolf; |
10: end |
11: Return α; |
4. Application of the GSGWO in Path Planning of Obstacle-Crossing Robot
4.1. Working Environment Model
4.2. Path Generation
4.3. Fitness Function
5. Simulation Experiment and Analysis
5.1. Introduction to the Algorithm Selected for the Experiment
5.2. Algorithm Performance Test
5.3. Path-Planning Simulation Experiment
5.3.1. Parameter Settings
5.3.2. Path-Planning Experiment
5.3.3. Stepped Simulation Experiment
5.3.4. Stability Test
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.X.; Wang, X.; Yang, X.; Liu, H.J.; Li, J.; Wang, P.F. Path planning techniques for mobile robots: Review and prospect. Expert Syst. Appl. 2023, 227, 120254. [Google Scholar] [CrossRef]
- Ngwenya, T.; Ayomoh, M.; Yadavalli, S. Virtual Obstacles for Sensors Incapacitation in Robot Navigation: A Systematic Review of 2D Path Planning. Sensors 2022, 22, 6943. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, A.; Ahmad, N.S. A systematic review on recent advances in autonomous mobile robot navigation. Eng. Sci. Technol. 2023, 40, 101343. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, J.; Wu, J.; Zhu, X.Z. Efficient and optimal penetration path planning for stealth unmanned aerial vehicle using minimal radar cross-section tactics and modified A-Star algorithm. ISA Trans. 2023, 134, 42–57. [Google Scholar] [CrossRef] [PubMed]
- He, Z.B.; Liu, C.G.; Chu, X.M.; Negenborn, R.R.; Wu, Q. Dynamic anti-collision A-star algorithm for multi-ship encounter situations. Appl. Ocean Res. 2022, 118, 102995. [Google Scholar] [CrossRef]
- Wang, X.W.; Lu, J.J.; Ke, F.Y.; Wang, X.; Wang, W. Research on AGV task path planning based on improved A* algorithm. Virtual Real. Intell. Hardw. 2023, 5, 246–265. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, E. Hybrid path planning using positioning risk and artificial potential fields. Aerosp. Sci. Technol. 2021, 112, 106640. [Google Scholar] [CrossRef]
- Malone, N.; Chiang, H.T.; Lesser, K.; Oishi, M.; Tapia, L. Hybrid dynamic moving obstacle avoidance using a stochastic reachable set-based potential field. IEEE Trans. Robot. 2017, 33, 1124–1138. [Google Scholar] [CrossRef]
- Kang, J.G.; Lim, D.W.; Choi, Y.S.; Jang, W.J.; Jin-Woo, J. Improved RRT-connect algorithm based on triangular inequality for robot path planning. Sensors 2021, 21, 333. [Google Scholar] [CrossRef]
- Wang, J.K.; Li, T.G.; Li, B.P.; Meng, M.Q.H. GMR-RRT*: Sampling-based path planning using gaussian mixture regression. IEEE Trans. Intell. Veh. 2022, 7, 690–700. [Google Scholar] [CrossRef]
- An, S.; Park, M.; Oh, H. Receding-horizon RRT-Infotaxis for autonomous source search in urban environments. Aerosp. Sci. Technol. 2022, 120, 107276. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.W.; Xie, Z.H.; Li, F.; Gu, X.S. Online obstacle avoidance path planning and application for arc welding robot. Robot. Comput. Integr. Manuf. 2022, 78, 102413. [Google Scholar] [CrossRef]
- Wang, T.C.; Wang, L.; Li, D.D.; Cai, J.C.; Wang, Y.X. Monte Carlo-based improved ant colony optimization for path planning of welding robot. Comput. Inf. Sci. 2023, 35, 101603. [Google Scholar] [CrossRef]
- Bine, L.M.S.; Boukerche, A.; Ruiz, L.B.; Loureiro, A.A.F. A novel ant colony-inspired coverage path planning for internet of drones. Comput. Netw. 2023, 235, 109963. [Google Scholar] [CrossRef]
- Pasandi, L.; Hooshmand, M.; Rahbar, M. Modified A* Algorithm integrated with ant colony optimization for multi-objective route-finding; case study: Yazd. Appl. Soft Comput. 2021, 113, 107877. [Google Scholar] [CrossRef]
- Cui, Q.Y.; Liu, P.F.; Du, H.D.; Wang, H.; Ma, X. Improved multi-objective artificial bee colony algorithm-based path planning for mobile robots. Front. Neurorobotics 2023, 17, 1196683. [Google Scholar] [CrossRef]
- Li, G.X.; Liu, C.; Wu, L.; Xiao, W.S. A mixing algorithm of ACO and ABC for solving path planning of mobile robot. Appl. Soft Comput. 2023, 148, 110868. [Google Scholar] [CrossRef]
- Jeng, S.L.; Chiang, C.H. End-to-end autonomous navigation based on deep reinforcement learning with a survival penalty function. Sensors 2023, 23, 8651. [Google Scholar] [CrossRef]
- He, L.; Aouf, N.; Song, B.F. Explainable deep reinforcement learning for UAV autonomous path planning. Aerosp. Sci. Technol. 2021, 118, 107052. [Google Scholar] [CrossRef]
- Ou, J.J.; Guo, X.; Lou, W.J.; Zhu, M. Quadrotor autonomous navigation in semi-known environments based on deep reinforcement Learning. Remote Sens. 2021, 13, 4330. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Chen, K.; Xiao, B.; Wang, C.Y.; Liu, X.L.; Liang, S.N.; Zhang, X. Cuckoo coupled improved grey wolf algorithm for PID parameter tuning. Appl. Sci. 2023, 13, 12944. [Google Scholar] [CrossRef]
- Xie, Q.Y.; Guo, Z.Q.; Liu, D.F.; Chen, Z.S.; Shen, Z.L.; Wang, X.L. Optimization of heliostat field distribution based on improved gray wolf optimization algorithm. Renew. Energy 2021, 176, 447–458. [Google Scholar] [CrossRef]
- Shen, W.J.; Xiao, M.H.; Wang, Z.Y.; Song, X.M. Rolling bearing fault diagnosis based on support vector machine optimized by improved grey wolf algorithm. Sensors 2023, 23, 6645. [Google Scholar] [CrossRef] [PubMed]
- Gai, J.B.; Shen, J.X.; Hu, Y.F.; Wang, H. An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing. Measurement 2020, 162, 107901. [Google Scholar] [CrossRef]
- Jarray, R.; Al-Dhaifallah, M.; Rezk, H.; Bouallegue, S. Parallel cooperative coevolutionary grey wolf optimizer for path planning problem of unmanned aerial vehicles. Sensors 2022, 22, 1826. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, L.; Tiwari, R. Path planning for the autonomous robots using modified grey wolf optimization approach. J. Intell. Fuzzy Syst. 2021, 40, 9453–9470. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.Q.; Li, Z.M.; Pan, W. Grey wolf optimizer for unmanned combat aerial vehicle path planning. Adv. Eng. Softw. 2016, 99, 121–136. [Google Scholar] [CrossRef]
- Singh, S.; Bansal, J.C. Mutation-driven grey wolf optimizer with modified search mechanism. Expert Syst. Appl. 2022, 194, 116450. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Kiani, F. I-GWO and Ex-GWO: Improved algorithms of the grey wolf optimizer to solve global optimization problems. Eng. Comput. 2021, 37, 509–532. [Google Scholar] [CrossRef]
- Meidani, K.; Hemmasian, A.; Mirjalili, S.; Barati Farimani, A.B. Adaptive grey wolf optimizer. Neural Comput. Appl. 2022, 34, 7711–7731. [Google Scholar] [CrossRef]
- Dong, L.; Yuan, X.F.; Yan, B.S.; Song, Y.; Xu, Q.Y.; Yang, X.Y. An improved grey wolf optimization with multi-strategy ensemble for robot path planning. Sensors 2022, 22, 6843. [Google Scholar] [CrossRef] [PubMed]
- Kiani, F.; Seyyedabbasi, A.; Nematzadeh, S.; Candan, F.; Cevik, T.; Anka, F.A.; Randazzo, G.; Lanza, S.F.N.; Muzirafuti, A. Adaptive metaheuristic-based methods for autonomous robot path planning: Sustainable agricultural applications. Appl. Sci. 2022, 12, 943. [Google Scholar] [CrossRef]
- Liu, H.Q.; Yu, Q.H.; Wu, Q. PID control model based on back propagation neural network optimized by adversarial learning-based grey wolf optimization. Appl. Sci. 2023, 13, 4767. [Google Scholar] [CrossRef]
- Tanyildizi, E.; Demir, G. Golden sine algorithm: A novel math-inspired algorithm. Adv. Electr. Comput. Eng. 2017, 2, 71–78. [Google Scholar] [CrossRef]
Parameter | Before Optimization | After Optimization |
---|---|---|
Path length | 14.4853 | 13.7509 |
Number of inflection points | 4 | 2 |
Function Name | Function Expressions | Region of Search | Solution |
---|---|---|---|
Sphere | [100, −100] | 0 | |
Schwefel | [−10, 10] | 0 | |
Prem | [−30, 30] | 0 | |
Ellipsoid | [−65.536, 65.536] | 0 |
Function Name | Performance | GWO | TGWO | IGWO | GSGWO |
---|---|---|---|---|---|
Sphere | average | 2.35 × 10−14 | 2.41 × 10−25 | 3.61 × 10−57 | 6.18 × 10−81 |
standard deviation | 2.01 × 10−14 | 8.27 × 10−26 | 3.36 × 10−57 | 2.16 × 10−81 | |
Schwefel | average | 9.80 × 10−7 | 2.14 × 10−14 | 1.06 × 10−29 | 1.35 × 10−47 |
standard deviation | 4.13 × 10−7 | 6.52 × 10−15 | 8.15 × 10−30 | 7.21 × 10−48 | |
Perm | average | 6.57 × 100 | 2.60 × 10−1 | 3.54 × 10−3 | 5.58 × 10−5 |
standard deviation | 8.15 × 101 | 1.48 × 10−2 | 4.98 × 10−4 | 6.14 × 10−6 | |
Ellipsoid | average | 2.17 × 10−25 | 1.65 × 10−49 | 0 | 0 |
standard deviation | 1.85 × 10−25 | 7.56 × 10−50 | 0 | 0 |
Parameter | Numerical Value |
---|---|
100 | |
50 | |
Equation (15) | |
Map rows | |
1 | |
1.5 | |
0.75 |
Map Size | Performance | GWO | TGWO | IGWO | GSGWO |
---|---|---|---|---|---|
20 × 20 | average | 34.77 | 33.06 | 31.21 | 31.21 |
standard deviation | 3.10 | 2.31 | 0.27 | 0.13 | |
30 × 30 | average | 84.94 | 58.34 | 51.87 | 49.77 |
standard deviation | 14.94 | 5.49 | 1.01 | 1.05 | |
40 × 40 | average | 154.28 | 82.18 | 67.65 | 61.74 |
standard deviation | 25.51 | 9.71 | 3.23 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Cai, G.; Wang, Y.; Li, X. Path Planning of Obstacle-Crossing Robot Based on Golden Sine Grey Wolf Optimizer. Appl. Sci. 2024, 14, 1129. https://doi.org/10.3390/app14031129
Zhao D, Cai G, Wang Y, Li X. Path Planning of Obstacle-Crossing Robot Based on Golden Sine Grey Wolf Optimizer. Applied Sciences. 2024; 14(3):1129. https://doi.org/10.3390/app14031129
Chicago/Turabian StyleZhao, Di, Guangrui Cai, Yuxing Wang, and Xixing Li. 2024. "Path Planning of Obstacle-Crossing Robot Based on Golden Sine Grey Wolf Optimizer" Applied Sciences 14, no. 3: 1129. https://doi.org/10.3390/app14031129
APA StyleZhao, D., Cai, G., Wang, Y., & Li, X. (2024). Path Planning of Obstacle-Crossing Robot Based on Golden Sine Grey Wolf Optimizer. Applied Sciences, 14(3), 1129. https://doi.org/10.3390/app14031129