Global Calibration and Error Estimation of Altimeter, Scatterometer, and Radiometer Wind Speed Using Triple Collocation
Abstract
:1. Introduction
2. Datasets
2.1. Altimeter Data
2.2. Scatterometer Data
2.3. Radiometer Data
2.4. National Data Buoy Center (NDBC) Buoy Data
3. Triple Collocation Method
3.1. Derivation of the Calibration Scheme
3.2. Control Conditions for Data Collocation
3.3. Wind Speed Errors
3.4. Calibrations Based on Triple Collocation
4. Comparison Calibrations between Reduced Major Axis (RMA) and Triple Collocations
5. Discussion
5.1. Triple Collocation
5.2. Comparison of Calibration Approaches
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Young, I.R.; Sanina, E.; Babanin, A.V. Calibration and cross validation of a global wind and wave database of altimeter, radiometer, and scatterometer measurements. J. Atmos. Ocean. Technol. 2017, 34, 1285–1306. [Google Scholar] [CrossRef]
- Verhoef, A.; Vogelzang, J.; Verspeek, J.; Stoffelen, A. Long-term scatterometer wind climate data records. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2186–2194. [Google Scholar] [CrossRef]
- Young, I.R.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Ribal, A.; Young, I.R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data 2019, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Ocean. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- An, R.; Zhang, L.; Wang, Z.; Quaye-Ballard, J.A.; You, J.; Shen, X.; Gao, W.; Huang, L.; Zhao, Y.; Ke, Z. Validation of the ESA CCI soil moisture product in China. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 28–36. [Google Scholar] [CrossRef]
- Draper, C.; Reichle, R.; de Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ. 2013, 137, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.; Su, C.-H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent advances in (soil moisture) triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 200–211. [Google Scholar] [CrossRef]
- Miyaoka, K.; Gruber, A.; Ticconi, F.; Hahn, S.; Wagner, W.; Figa-Saldana, J.; Anderson, C. Triple Collocation Analysis of Soil Moisture from Metop-A ASCAT and SMOS Against JRA-55 and ERA-Interim. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2274–2284. [Google Scholar] [CrossRef]
- Scipal, K.; Dorigo, W.; de Jeu, R. Triple collocation—A new tool to determine the error structure of global soil moisture products. In Proceedings of the International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 4426–4429. [Google Scholar]
- Su, C.H.; Ryu, D.; Crow, W.T.; Western, A.W. Beyond triple collocation: Applications to soil moisture monitoring. J. Geophys. Res. Atmos. 2014, 119, 6419–6439. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Renzullo, L.J.; Wada, Y.; Tregoning, P. A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol. Earth Syst. Sci. 2014, 18, 2955–2973. [Google Scholar] [CrossRef] [Green Version]
- Alemohammad, S.H.; McColl, K.A.; Konings, A.G.; Entekhabi, D.; Stoffelen, A. Characterization of precipitation product errors across the United States using multiplicative triple collocation. Hydrol. Earth Syst. Sci. 2015, 19, 3489–3503. [Google Scholar] [CrossRef] [Green Version]
- Thao, S.; Eymard, L.; Obligis, E.; Picard, B. Trend and variability of the atmospheric water vapor: A mean sea level issue. J. Atmos. Ocean. Technol. 2014, 31, 1881–1901. [Google Scholar] [CrossRef] [Green Version]
- Ratheesh, S.; Mankad, B.; Basu, S.; Kumar, R.; Sharma, R. Assessment of satellite-derived sea surface salinity in the Indian ocean. IEEE Geosci. Remote Sens. Lett. 2013, 10, 428–431. [Google Scholar] [CrossRef]
- Caires, S.; Sterl, A. Validation of ocean wind and wave data using triple collocation. J. Geophys. Res. Ocean. 2003, 108, 1–16. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M.; Abdalla, S.; Hersbach, H.; Bidlot, J.-R. Error estimation of buoy, satellite, and model wave height data. J. Atmos. Ocean. Technol. 2007, 24, 1665–1677. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Kumar, R.; Stoffelen, A. Validation of ocean surface winds from the OCEANSAT-2 scatterometer using triple collocation. Remote Sens. Lett. 2013, 4, 85–94. [Google Scholar] [CrossRef]
- Abdalla, S.; Chiara, G.D. Estimating random errors of scatterometer, altimeter, and model wind speed data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2406–2414. [Google Scholar] [CrossRef]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Xiao, Q.; Wen, J.; You, D. Direct comparison and triple collocation: Which is more reliable in the validation of coarse-scale satellite surface albedo products. J. Geophys. Res. Atmos. 2019, 124, 5198–5213. [Google Scholar] [CrossRef]
- Vogelzang, J.; Stoffelen, A. Triple Collocation. NWPSAF Technical Report NWPSAF-KN-TR-021 2012, EUMETSAT. Available online: http://projects.knmi.nl/publications/fulltexts/triplecollocation_nwpsaf_tr_kn_021_v1.0.pdf (accessed on 22 July 2019).
- Ribal, A.; Young, I.R. Calibration and cross-validation of global ocean wind speed based on scatterometer observation. J. Atmos. Ocean. Technol. 2020, 37, 279–297. [Google Scholar] [CrossRef]
- Vogelzang, J.; Stoffelen, A.; Verhoef, A.; Figa-Saldaña, J. On the quality of high-resolution scatterometer winds. J. Geophys. Res. Ocean. 2011, 116, C10033. [Google Scholar] [CrossRef] [Green Version]
- Harper, W.V. Reduced major axis regression: Teaching alternatives to least squares. In Proceedings of the Ninth International Conference on Teaching Statistics (ICOTS9), Flagstaff, AZ, USA, 13–18 July 2014. [Google Scholar]
- Holland, P.W.; Welsch, R.E. Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods 1977, 6, 813–827. [Google Scholar] [CrossRef]
- Chelton, D.B.; Ries, J.C.; Haines, B.J.; Fu, L.L.; Callahan, P.S. Satellite Altimetry. In Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications; Fu, L.-L., Cazenave, A., Eds.; Academic Press: San Diego, CA, USA, 2001; Volume 69, pp. 1–131. [Google Scholar]
- Abdalla, S. Ku-band radar altimeter surface wind speed algorithm. Mar. Geod. 2012, 35, 276–298. [Google Scholar] [CrossRef] [Green Version]
- Mears, C.A.; Smith, D.K.; Wentz, F.J. Comparison of special sensor microwave Imager and buoy-measured wind speeds from 1987 to 1997. J. Geophys. Res. Ocean. 2001, 106, 11719–11729. [Google Scholar] [CrossRef] [Green Version]
- Hollinger, J.P.; Peirce, J.L.; Poe, G.A. SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens. 1990, 28, 781–790. [Google Scholar] [CrossRef]
- Wentz, F.J. A well-calibrated ocean algorithm for special sensor microwave / imager. J. Geophys. Res. Ocean. 1997, 102, 8703–8718. [Google Scholar] [CrossRef] [Green Version]
- Meissner, T.; Wentz, F.J. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3004–3026. [Google Scholar] [CrossRef]
- Takbash, A.; Young, I.R. Global ocean extreme wave heights from spatial ensemble data. J. Clim. 2019, 32, 6823–6836. [Google Scholar] [CrossRef]
- Priestley, C.H.B. Turbulent Transfer in the Lower Atmosphere; University of Chicago Press: Chicago, IL, USA, 1959. [Google Scholar]
- Young, I.R. Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol. 1999, 19, 931–950. [Google Scholar] [CrossRef]
- Zieger, S.; Vinoth, J.; Young, I.R. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. J. Atmos. Ocean. Technol. 2009, 26, 2549–2564. [Google Scholar] [CrossRef]
- Nearing, G.S.; Yatheendradas, S.; Crow, W.T.; Bosch, D.D.; Cosh, M.H.; Goodrich, D.C.; Seyfried, M.S.; Starks, P.J. Nonparametric triple collocation. Water Resour. Res. 2017, 53, 5516–5530. [Google Scholar] [CrossRef]
- Zieger, S.; Babanin, A.V.; Erick Rogers, W.; Young, I.R. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean. Model. 2015, 96, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Takbash, A.; Young, I.R.; Breivik, Ø. Global wind speed and wave height extremes derived from long-duration satellite records. J. Clim. 2019, 32, 109–126. [Google Scholar] [CrossRef]
No. | Altimeters/NDBC (Error Standard Deviation (m/s)) | Scatterometers (Error Standard Deviation (m/s)) | Radiometers (Error Standard Deviation (m/s)) | N | O | C |
---|---|---|---|---|---|---|
1. | TOPEX (0.524) | QUIKSCAT (0.391) | F15 (0.794) | 35,795 | 228 | 35,567 |
2. | ERS-2 (0.605) | QUIKSCAT (0.473) | F15 (0.673) | 15,143 | 77 | 15,066 |
3. | JASON-1 (0.571) | QUIKSCAT (0.387) | F15 (0.771) | 94,779 | 825 | 93,954 |
4. | ENVISAT (0.545) | QUIKSCAT (0.463) | F15 (0.637) | 27,136 | 305 | 26,831 |
5. | JASON-2 (0.538) | METOP-A (0.546) | AMSR-2 (0.682) | 23,677 | 218 | 23,459 |
6. | JASON-2 (0.284) | METOP-A (1.022) | WINDSAT (0.723) | 34,424 | 219 | 34,205 |
7. | JASON-2 (0.574) | METOP-A (0.643) | GMI (0.602) | 27,297 | 306 | 26,991 |
8. | JASON-2 (0.547) | METOP-B (0.547) | AMSR-2 (0.667) | 23,592 | 210 | 23,382 |
9. | JASON-2 (0.257) | METOP-B (1.011) | WINDSAT (0.725) | 21,100 | 157 | 20,943 |
10. | JASON-2 (0.578) | METOP-B (0.635) | GMI (0.607) | 26,889 | 318 | 26,571 |
11. | CRYOSAT-2 (0.505) | METOP-A (0.555) | AMSR-2 (0.710) | 13,487 | 172 | 13,315 |
12. | CRYOSAT-2 (0.310) | METOP-A (0.899) | WINDSAT (0.670) | 19,745 | 180 | 19,565 |
13. | NDBC (0.833) | METOP-A (0.542) | WINDSAT (0.725) | 58,313 | 814 | 57,499 |
14 | NDBC (0.840) | METOP-B (0.523) | WINDSAT (0.698) | 39,389 | 636 | 38,753 |
No. | Satellite Measurements | Mean Error Standard Deviation (m/s) | Mean Error Standard Deviation for Platform Type (m/s) |
---|---|---|---|
1. | TOPEX | 0.524 | 0.519 |
2. | ERS-2 | 0.605 | |
3. | JASON-1 | 0.571 | |
4. | ENVISAT | 0.545 | |
5. | JASON-2 | 0.463 | |
6. | CRYOSAT-2 | 0.407 | |
7. | QUIKSCAT | 0.428 | 0.603 |
8. | METOP-A | 0.701 | |
9. | METOP-B | 0.679 | |
10. | SSMI-F15 | 0.719 | 0.679 |
11. | AMSR-2 | 0.686 | |
12. | WINDSAT | 0.708 | |
13. | GMI | 0.604 | |
14. | NDBC | 0.837 | 0.837 |
Altimeters | Scatterometers | Radiometers | |||||||
---|---|---|---|---|---|---|---|---|---|
QS | MA | MB | F15 | AM | WS | GMI | |||
TP | −0.2964 | −0.0062 | |||||||
0.9918 | 0.9448 | ||||||||
E2 | −0.0847 | −0.0794 | |||||||
0.9785 | 0.9722 | ||||||||
J1 | −0.0911 | 0.1769 | |||||||
0.9787 | 0.9394 | ||||||||
EV | −0.2669 | −0.0729 | |||||||
0.9706 | 0.9455 | ||||||||
J2 | 0.1408 | −0.1341 | |||||||
0.9270 | 0.9442 | ||||||||
0.2169 | 0.1607 | ||||||||
0.9180 | 0.9235 | ||||||||
0.5471 | 0.3564 | ||||||||
0.8909 | 0.9137 | ||||||||
0.1276 | −0.1429 | ||||||||
0.9331 | 0.9445 | ||||||||
0.4693 | 0.2270 | ||||||||
0.8977 | 0.9183 | ||||||||
0.2287 | 0.1409 | ||||||||
0.9225 | 0.9257 | ||||||||
C2 | 0.5259 | 0.4919 | |||||||
0.9214 | 0.9167 | ||||||||
0.6916 | 0.8028 | ||||||||
0.9036 | 0.8898 |
Radiometers | Scatterometers | Altimeters Used in Triplet | |||
---|---|---|---|---|---|
QUIKSCAT | METOP-A | METOP-B | |||
SSMI-F15 | −0.2899 | TOPEX | |||
1.0498 | |||||
−0.0047 | ERS-2 | ||||
1.0065 | |||||
−0.2755 | JASON-1 | ||||
1.0418 | |||||
. | −0.1921 | ENVISAT | |||
1.0265 | |||||
AMSR-2 | 0.2725 | 0.2688 | JASON-2 | ||
0.9818 | 0.9879 | ||||
. | 0.0315 | CRYOSAT-2 | |||
1.0052 | |||||
WINDSAT | 0.1996 | 0.2474 | JASON-2 | ||
. | 0.9750 | 0.9775 | |||
−0.1237 | CRYOSAT-2 | ||||
1.0156 | |||||
GMI | 0.0571 | 0.0883 | JASON-2 | ||
0.9940 | 0.9966 |
Scat | Method | Calibration Relation | 95% Limit Slope | 95% Limit Offset | N | % Outliers | Ref. |
---|---|---|---|---|---|---|---|
MA | RMA | 1.037 to 1.043 | −0.225 to −0.173 | 57,499 | 0.91 | NDBC | |
TC | |||||||
WS | RMA | 1.058 to 1.065 | −0.543 to −0.483 | 0.84 | |||
TC | |||||||
MA | RMA | 0.976 to 0.982 | 0.283 to 0.328 | 0.34 | WS | ||
TC | |||||||
MB | RMA | 1.024 to 1.032 | −0.161 to −0.096 | 38,753 | 1.10 | NDBC | |
TC | |||||||
WS | RMA | 1.051 to 1.060 | −0.517 to −0.442 | 1.06 | |||
TC | |||||||
MB | RMA | 0.969 to 0.975 | 0.326 to 0.381 | 0.35 | WS | ||
TC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribal, A.; Young, I.R. Global Calibration and Error Estimation of Altimeter, Scatterometer, and Radiometer Wind Speed Using Triple Collocation. Remote Sens. 2020, 12, 1997. https://doi.org/10.3390/rs12121997
Ribal A, Young IR. Global Calibration and Error Estimation of Altimeter, Scatterometer, and Radiometer Wind Speed Using Triple Collocation. Remote Sensing. 2020; 12(12):1997. https://doi.org/10.3390/rs12121997
Chicago/Turabian StyleRibal, Agustinus, and Ian R. Young. 2020. "Global Calibration and Error Estimation of Altimeter, Scatterometer, and Radiometer Wind Speed Using Triple Collocation" Remote Sensing 12, no. 12: 1997. https://doi.org/10.3390/rs12121997
APA StyleRibal, A., & Young, I. R. (2020). Global Calibration and Error Estimation of Altimeter, Scatterometer, and Radiometer Wind Speed Using Triple Collocation. Remote Sensing, 12(12), 1997. https://doi.org/10.3390/rs12121997