Study on Soil Freeze–Thaw and Surface Deformation Patterns in the Qilian Mountains Alpine Permafrost Region Using SBAS-InSAR Technique
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Data
2.2.1. SAR Data
2.2.2. GLO-30 DEM
2.2.3. Underlying Surface Data and Permafrost-Related Data
2.2.4. GNSS Data
3. Method
3.1. SBAS-InSAR Processing Workflow
3.2. Establishment of a Two-Dimensional Surface Deformation Field
3.2.1. Time Series Registration of Ascending and Descending Results Based on Cubic Spline Interpolation
3.2.2. Calculation of Two-Dimensional Surface Deformation Fields
3.3. GNSS Processing
3.3.1. Detrending GNSS Data
3.3.2. Denoising GNSS Data
3.4. Development of a Permafrost Dynamic Periodic Deformation Model
3.5. Application of Q-Statistics to Analyze Interannual Deformation Rate and Seasonal Deformation Influencing Factors
4. Results
4.1. SBAS-InSAR Results
4.2. Establishment of the Two-Dimensional Surface Deformation Field and Cross-Validation with GNSS Data
4.3. Analysis of Vertical Surface Deformation Time Series in Typical Regions
4.4. Spatial Distribution of Annual Vertical Surface Deformation Rates
4.5. Spatial Distribution of Seasonal Deformation in Permafrost
4.6. Analysis of Interannual Deformation Rate and the Influencing Factors of Seasonal Deformation
4.6.1. Factors Influencing Interannual Deformation Rate
4.6.2. Factors Influencing the Amplitude of Seasonal Deformation
4.7. Relationship Between Permafrost Freeze–Thaw-Induced Surface Deformation and Topographical Factors
4.7.1. The Impact of Altitude on Permafrost Deformation
4.7.2. The Impact of Slope on Permafrost Deformation
4.7.3. The Impact of Aspect on Permafrost Deformation
4.8. The Relationship Between Permafrost Freeze–Thaw-Induced Surface Deformation and Climatic Factors
4.8.1. Response of Permafrost Deformation to Temperature
4.8.2. Response of Permafrost Deformation to Soil Moisture and Precipitation
5. Discussion
5.1. Monitoring Surface Deformation Using SBAS-InSAR Technology
5.2. Factors Affecting Permafrost Deformation
5.3. The Five Stages of Seasonal Deformation in Permafrost
5.3.1. Warming and Melting Phase
5.3.2. Cooling and Freezing Phase
5.4. Applications of Two-Dimensional Surface Deformation Fields Under Spatiotemporal Interpolation
5.5. Applications of Dynamic Periodic Deformation Model
6. Conclusions
- Spatiotemporal Interpolation: This study innovatively integrated ascending and descending orbit SAR data, generating a two-dimensional surface deformation field. The vertical deformation ranged from −20 mm/a to 20 mm/a, with an average rate of 1.56 mm/a. Subsidence dominated in permafrost regions, while areas near Qinghai Lake showed surface uplift due to high soil moisture.
- Dynamic Periodic Deformation Model: The first use of this model to analyze vertical time-series deformation provided insights into seasonal amplitude changes. The average seasonal deformation amplitude was 35 mm, influenced by soil moisture and temperature, with a growing trend towards permafrost instability and degradation.
- Factors Influencing Permafrost Deformation: Permafrost freeze–thaw cycles are influenced by both topographical factors (elevation, slope gradient, aspect) and climatic factors (temperature, soil moisture, precipitation). As elevation increases, both the annual and seasonal deformation rates generally decrease. Steeper slopes, which lose moisture more quickly, experience lower deformation rates, while gentler slopes with higher moisture accumulation show greater deformation. Northern slopes, receiving less solar radiation and having more temperature variation, tend to experience higher subsidence rates than southern slopes. Permafrost is highly sensitive to temperature and moisture. Surface deformation is inversely related to temperature changes, with some delay. As temperatures rise, the active layer melts, causing surface subsidence, while freezing temperatures cause the layer to freeze, leading to surface uplift. Moist soil accelerates permafrost melting due to its higher heat capacity and thermal conductivity, increasing the amplitude of seasonal deformation. Additionally, increased precipitation contributes to permafrost instability by raising soil moisture and enhancing percolation.
- Deformation Phases: The paper delineated the surface deformation process of permafrost into a warming and melting phase and cooling and freezing phase. The warming and melting phase included the summer melting process and the warm season stability process, primarily characterized by subsidence due to the melting of the active layer. The cooling and freezing phase encompassed the frost heave process, the winter cooling process, and the spring warming process. These phases mainly displayed gradual surface uplift and minor deformations triggered by temperature fluctuations. These processes, influenced by temperature changes and the dynamic freeze–thaw of the active layer, affected the stability and deformation characteristics of the surface.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, J.Z.; Chen, L.Y.; Ji, C.J.; Hugelius, G.; Li, Y.N.; Liu, L.; Qin, S.Q.; Zhang, B.B.; Yang, G.B.; Li, F.; et al. Decadal Soil Carbon Accumulation across Tibetan Permafrost Regions. Nat. Geosci. 2017, 10, 420–424. [Google Scholar] [CrossRef]
- Webb, E.E.; Liljedahl, A.K. Diminishing Lake Area across the Northern Permafrost Zone. Nat. Geosci. 2023, 16, 202–209. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhao, L.; Wang, L.X.; Liu, S.B.; Zhou, H.Y.; Li, Z.; Liu, G.Y.; Du, E.; Zou, D.F.; Hou, Y.X. Ground Deformation and Permafrost Degradation in the Source Region of the Yellow River, in the Northeast of the Qinghai-Tibet Plateau. Remote Sens. 2023, 15, 3153. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate Change and the Permafrost Carbon Feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Zou, D.F.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.J.; Wu, T.H.; Wu, J.C.; Xie, C.W.; Wu, X.D.; Pang, Q.Q.; et al. A New Map of Permafrost Distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef]
- Wang, L.X.; Zhao, L.; Zhou, H.Y.; Liu, S.B.; Du, E.; Zou, D.F.; Liu, G.Y.; Wang, C.; Li, Y. Permafrost Ground Ice Melting and Deformation Time Series Revealed by Sentinel-1 InSAR in the Tanggula Mountain Region on the Tibetan Plateau. Remote Sens. 2022, 14, 811. [Google Scholar] [CrossRef]
- Li, R.; Wu, Q.B.; Li, X.; Sheng, Y.; Hu, G.; Cheng, G.D.; Zhao, L.; Jin, H.J.; Zou, D.F.; Wu, X.D. Characteristic, Changes and Impacts of Permafrost on Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar] [CrossRef]
- Kang, S.C.; Xu, Y.W.; You, Q.L.; Flügel, W.-A.; Pepin, N.; Yao, T.D. Review of Climate and Cryospheric Change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5, 015101. [Google Scholar] [CrossRef]
- Wang, Q.X.; Fan, X.H.; Wang, M.B. Recent Warming Amplification over High Elevation Regions across the Globe. Clim. Dyn. 2014, 43, 87–101. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Yao, T.D.; Piao, S.L.; Bolch, T.; Xie, H.J.; Chen, D.L.; Gao, Y.H.; O’Reilly, C.M.; Shum, C.K.; Yang, K.; et al. Extensive and Drastically Different Alpine Lake Changes on Asia’s High Plateaus during the Past Four Decades. Geophys. Res. Lett. 2017, 44, 252–260. [Google Scholar] [CrossRef]
- Cheng, G.D.; Wu, T.H. Responses of Permafrost to Climate Change and Their Environmental Significance, Qinghai-Tibet Plateau. J. Geophys. Res. Earth Surf. 2007, 112, 2006JF000631. [Google Scholar] [CrossRef]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost Degradation and Its Environmental Effects on the Tibetan Plateau: A Review of Recent Research. Earth Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- He, Z.J.; Xu, X.C.; Zhong, Z.T.; Li, X.; Liu, X.P. Spatial-Temporal Variations Analysis of Snow Cover in China from 1992–2010. Chin. Sci. Bull. 2018, 63, 2641–2654. [Google Scholar] [CrossRef]
- Li, D.-L. Spatial-Temporal Variations of Snow Cover Days and the Maximum Depth of Snow Cover in China during Recent 50 Years. J. Glaciol. Geocryol. 2012, 2, 247–256. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Keyimu, M.; Li, X.Y.; Wu, S.X.; Zeng, F.J.; Lin, L.S. Climate and Elevation Control Snow Depth and Snow Phenology on the Tibetan Plateau. J. Hydrol. 2023, 617, 128938. [Google Scholar] [CrossRef]
- Tian, H.Z.; Yang, T.B.; Liu, Q.P. Climate Change and Glacier Area Shrinkage in the Qilian Mountains, China, from 1956 to 2010. Ann. Glaciol. 2014, 55, 187–197. [Google Scholar] [CrossRef]
- Sun, M.P.; Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.L. Glacier Changes in the Qilian Mountains in the Past Half-Century: Based on the Revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef]
- Chen, R.S.; Han, C.T.; Wang, L.; Zhao, Y.N.; Song, Y.X.; Yang, Y.; Liu, J.F.; Liu, Z.W.; Wang, X.Q.; Guo, S.H.; et al. Impact of the Alpine Precipitation Measurements on the Precipitation in 2019 and 2020 in the Qilian Mountains. J. Glaciol. Geocryol. 2023, 45, 676–687. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Q.; Feng, J.Y.; Bai, H.Z.; Zhao, J.H.; Xu, X.H. A Study of Atmospheric Water Cycle over the Qilian Mountains(I):Variation of Annual Water Vapor Transport. J. Glaciol. Geocryol. 2014, 36, 1079–1091. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Du, Q.S.; Li, G.Y.; Chen, D.; Zhou, Y.; Qi, S.S.; Wu, G.; Chai, M.T.; Tang, L.Y.; Jia, H.L.; Peng, W.L. SBAS-InSAR-Based Analysis of Surface Deformation in the Eastern Tianshan Mountains, China. Front. Earth Sci. 2021, 9, 729454. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar Interferometry and Its Application to Changes in the Earth’s Surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Hanssen, R.F.; Weckwerth, T.M.; Zebker, H.A.; Klees, R. High-Resolution Water Vapor Mapping from Interferometric Radar Measurements. Science 1999, 283, 1297–1299. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Yang, H.L.; Jiang, Q.; Han, J.F.; Kang, K.-Y.; Peng, J.H. InSAR Measurements of Surface Deformation over Permafrost on Fenghuoshan Mountains Section, Qinghai-Tibet Plateau. J. Syst. Eng. Electron. 2021, 32, 1284–1303. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent Advances in SAR Interferometry Time Series Analysis for Measuring Crustal Deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Wang, S.; Xu, B.; Shan, W.; Shi, J.C.; Li, Z.W.; Feng, G.C. Monitoring the Degradation of Island Permafrost Using Time-Series InSAR Technique: A Case Study of Heihe, China. Sensors 2019, 19, 1364. [Google Scholar] [CrossRef]
- Pepe, A.; Calò, F. A Review of Interferometric Synthetic Aperture RADAR (InSAR) Multi-Track Approaches for the Retrieval of Earth’s Surface Displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Z.; Li, Z.W. Recent Progress in Retrieving and Predicting Mining-Induced 3D Displace-Ments Using InSAR. Acta Geod. Cartogr. Sin. 2019, 48, 135–144. [Google Scholar] [CrossRef]
- Gatsios, T.; Cigna, F.; Tapete, D.; Sakkas, V.; Pavlou, K.; Parcharidis, I. Copernicus Sentinel-1 MT-InSAR, GNSS and Seismic Monitoring of Deformation Patterns and Trends at the Methana Volcano, Greece. Appl. Sci. 2020, 10, 6445. [Google Scholar] [CrossRef]
- Shahzad, N.; Ding, X.L.; Wu, S.B.; Liang, H.Y. Ground Deformation and Its Causes in Abbottabad City, Pakistan from Sentinel-1A Data and MT-InSAR. Remote Sens. 2020, 12, 3442. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring Landslides and Tectonic Motions with the Permanent Scatterers Technique. Eng. Geol. 2003, 68, 3–14. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, C.X.; Zheng, L.; Liu, T.T.; Yang, X.T. Monitoring Evolution of Melt Ponds on First-Year and Multiyear Sea Ice in the Canadian Arctic Archipelago with Optical Satellite Data. Ann. Glaciol. 2020, 61, 154–163. [Google Scholar] [CrossRef]
- Ge, W.L.; Li, Y.J.; Wang, Z.C.; Zhang, C.M.; Yang, H.L. Spatial-Temporal Ground Deformation Study of Baotou Based on the PS-InSAR Method. Acta Geol. Sin. 2021, 95, 674–683. [Google Scholar] [CrossRef]
- Du, Q.S.; Li, G.Y.; Zhou, Y.; Chai, M.T.; Chen, D.; Qi, S.S.; Wu, G. Deformation Monitoring in an Alpine Mining Area in the Tianshan Mountains Based on SBAS-InSAR Technology. Adv. Mater. Sci. Eng. 2021, 2021, 9988017. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, Y.; Zhang, Y.W.; Wang, X.B.; Wu, L.M.; Ding, P.P.; Jin, L.H. Monitoring and Analysis of Land Subsidence in Modern Yellow River Delta Using SBAS-InSAR Technology. IOP Conf. Ser. Earth Environ. Sci. 2021, 643, 012166. [Google Scholar] [CrossRef]
- Hu, J.; Ge, Q.Q.; Liu, J.H.; Yang, W.Y.; Du, Z.G.; He, L.H. Constructing Adaptive Deformation Models for Estimating DEM Error in SBAS-InSAR Based on Hypothesis Testing. Remote Sens. 2021, 13, 2006. [Google Scholar] [CrossRef]
- Gray, L. Using Multiple RADARSAT InSAR Pairs to Estimate a Full Three-Dimensional Solution for Glacial Ice Movement: Multiple Interferograms for 3-d Motion. Geophys. Res. Lett. 2011, 38, 46484. [Google Scholar] [CrossRef]
- Samsonov, S.; d’Oreye, N. Multidimensional Time-Series Analysis of Ground Deformation from Multiple InSAR Data Sets Applied to Virunga Volcanic Province. Geophys. J. Int. 2012, 191, 1095–1108. [Google Scholar] [CrossRef]
- Sousa, J.J.; Ruiz, A.M.; Hanssen, R.F.; Bastos, L.; Gil, A.J.; Galindo-Zaldívar, J.; Sanz De Galdeano, C. PS-InSAR Processing Methodologies in the Detection of Field Surface Deformation—Study of the Granada Basin (Central Betic Cordilleras, Southern Spain). J. Geodyn. 2010, 49, 181–189. [Google Scholar] [CrossRef]
- Hou, J.X.; Xu, B.; Li, Z.W.; Zhu, Y.; Feng, G.C. Block PS-InSAR Ground Deformation Estimation for Large-Scale Areas Based on Network Adjustment. J. Geod. 2021, 95, 111. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhao, C.Y.; Zhang, Q.; Yang, C.S. Complex Surface Deformation Monitoring and Mechanism Inversion over Qingxu-Jiaocheng, China with Multi-Sensor SAR Images. J. Geodyn. 2018, 114, 41–52. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M.; Agnew, D. The Complete (3-D) Surface Displacement Field in the Epicentral Area of the 1999 MW7.1 Hector Mine Earthquake, California, from Space Geodetic Observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Jung, H.-S.; Lu, Z.; Won, J.-S.; Poland, M.; Miklius, A. Mapping Three-Dimensional Surface Deformation by Combining Multiple-Aperture Interferometry and Conventional Interferometry: Application to the June 2007 Eruption of Kilauea Volcano, Hawaii. IEEE Geosci. Remote Sens. Lett. 2011, 8, 34–38. [Google Scholar] [CrossRef]
- Catalao, J.; Nico, G.; Hanssen, R.; Catita, C. Merging GPS and Atmospherically Corrected InSAR Data to Map 3-D Terrain Displacement Velocity. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2354–2360. [Google Scholar] [CrossRef]
- Guglielmino, F.; Nunnari, G.; Puglisi, G.; Spata, A. Simultaneous and Integrated Strain Tensor Estimation from Geodetic and Satellite Deformation Measurements to Obtain Three-Dimensional Displacement Maps. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1815–1826. [Google Scholar] [CrossRef]
- Short, N.; Brisco, B.; Couture, N.; Pollard, W.; Murnaghan, K.; Budkewitsch, P. A Comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR Interferometry for Monitoring Permafrost Environments, Case Study from Herschel Island, Canada. Remote Sens. Environ. 2011, 115, 3491–3506. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Wu, H.A.; Sun, G.T. Deformation Model of Time Series Interferometric SAR Techniques. Acta Geod. Cartogr. Sin. 2012, 41, 864–869. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.J.; Wahr, J. InSAR Measurements of Surface Deformation over Permafrost on the North Slope of Alaska. J. Geophys. Res. Earth Surf. 2010, 115, 1547. [Google Scholar] [CrossRef]
- Liu, L.; Schaefer, K.; Zhang, T.J.; Wahr, J. Estimating 1992–2000 Average Active Layer Thickness on the Alaskan North Slope from Remotely Sensed Surface Subsidence. J. Geophys. Res. Earth Surf. 2012, 117, 2011JF002041. [Google Scholar] [CrossRef]
- Chang, T.; Han, J.; Li, Z.; Wen, Y.; Hao, T.; Lu, P.; Li, R. Active Layer Thickness Retrieval over the Qinghai-Tibet Plateau from 2000 to 2020 Based on Insar-Measured Subsidence and Multi-Layer Soil Moisture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B3-2021, 437–442. [Google Scholar] [CrossRef]
- Li, Z.W.; Zhao, R.; Hu, J.; Wen, L.X.; Feng, G.C.; Zhang, Z.Y.; Wang, Q.J. InSAR Analysis of Surface Deformation over Permafrost to Estimate Active Layer Thickness Based on One-Dimensional Heat Transfer Model of Soils. Sci. Rep. 2015, 5, 15542. [Google Scholar] [CrossRef]
- Daout, S.; Doin, M.-P.; Peltzer, G.; Socquet, A.; Lasserre, C. Large-Scale InSAR Monitoring of Permafrost Freeze-Thaw Cycles on the Tibetan Plateau. Geophys. Res. Lett. 2017, 44, 901–909. [Google Scholar] [CrossRef]
- Geng, L.Y.; Che, T.; Wang, X.F.; Wang, H.B. Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian Mountain Region during 2000–2017. Remote Sens. 2019, 11, 103. [Google Scholar] [CrossRef]
- Zhang, L.F.; Yan, H.W.; Qiu, L.S.; Cao, S.P.; He, Y.; Pang, G.J. Spatial and Temporal Analyses of Vegetation Changes at Multiple Time Scales in the Qilian Mountains. Remote Sens. 2021, 13, 5046. [Google Scholar] [CrossRef]
- Ding, M.J.; Zhang, Y.L.; Liu, L.S.; Zhang, W.; Wang, Z.F.; Bai, W.Q. The Relationship between NDVI and Precipitation on the Tibetan Plateau. J. Geogr. Sci. 2007, 17, 259–268. [Google Scholar] [CrossRef]
- Deng, S.F.; Yang, T.B.; Zeng, B.; Zhu, X.F.; Xu, H.J. Vegetation Cover Variation in the Qilian Mountains and Its Response to Climate Change in 2000–2011. J. Mt. Sci. 2013, 10, 1050–1062. [Google Scholar] [CrossRef]
- Qin, Y.; Lei, H.M.; Yang, D.W.; Gao, B.; Wang, Y.H.; Cong, Z.T.; Fan, W.J. Long-Term Change in the Depth of Seasonally Frozen Ground and Its Ecohydrological Impacts in the Qilian Mountains, Northeastern Tibetan Plateau. J. Hydrol. 2016, 542, 204–221. [Google Scholar] [CrossRef]
- Lin, P.F.; He, Z.B.; Du, J.; Chen, L.F.; Zhu, X.; Li, J. Recent Changes in Daily Climate Extremes in an Arid Mountain Region, a Case Study in Northwestern China’s Qilian Mountains. Sci. Rep. 2017, 7, 2245. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; He, Y.Q.; Theakstone, W.H.; Wang, X.F.; Zhang, W.; Cao, W.H.; Du, J.K.; Xin, H.J.; Chang, L. Altitude Dependency of Trends of Daily Climate Extremes in Southwestern China, 1961–2008. J. Geogr. Sci. 2012, 22, 416–430. [Google Scholar] [CrossRef]
- Sun, F.X.; Lyu, Y.H.; Fu, B.J.; Hu, J. Hydrological Services by Mountain Ecosystems in Qilian Mountain of China: A Review. Chin. Geogr. Sci. 2016, 26, 174–187. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Q.B.; Marchenko, S.S.; Sharkhuu, N. Thermal State of Permafrost and Active Layer in Central Asia during the International Polar Year. Permafr. Periglac. Process. 2010, 21, 198–207. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Yang, Y.; Pan, X.; Ding, Y.; Duan, Z. Permafrost Hydrology of the Qinghai-Tibet Plateau: A Review of Processes and Modeling. Front. Earth Sci. 2021, 8, 576838. [Google Scholar] [CrossRef]
- Li, Y.Y.; Li, L.Y.; Chen, C.F.; Liu, Y. Correction of Global Digital Elevation Models in Forested Areas Using an Artificial Neural Network-Based Method with the Consideration of Spatial Autocorrelation. Int. J. Digit. Earth 2023, 16, 1568–1588. [Google Scholar] [CrossRef]
- Zhao, B.; Huang, Y.; Zhang, C.H.; Wang, W.; Tan, K.; Du, R.L. Crustal Deformation on the Chinese Mainland during 1998–2014 Based on GPS Data. Geod. Geodyn. 2015, 6, 7–15. [Google Scholar] [CrossRef]
- Yu, J.S.; Tan, K.; Zhang, C.H.; Zhao, B.; Wang, D.Z.; Li, Q. Present-Day Crustal Movement of the Chinese Mainland Based on Global Navigation Satellite System Data from 1998 to 2018. Adv. Space Res. 2019, 63, 840–856. [Google Scholar] [CrossRef]
- Yi, Y.N.; Xu, X.W.; Xu, G.Y.; Gao, H.R. Rapid Mapping of Slow-Moving Landslides Using an Automated SAR Processing Platform (HyP3) and Stacking-InSAR Method. Remote Sens. 2023, 15, 1611. [Google Scholar] [CrossRef]
- Zhang, B.; Chang, L.; Stein, A. Spatio-Temporal Linking of Multiple SAR Satellite Data from Medium and High Resolution Radarsat-2 Images. ISPRS J. Photogramm. Remote Sens. 2021, 176, 222–236. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar Interferogram Filtering for Geophysical Applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Fattahi, H.; Amelung, F. Small Baseline InSAR Time Series Analysis: Unwrapping Error Correction and Noise Reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar] [CrossRef]
- Karamvasis, K.; Karathanassi, V. Performance Analysis of Open Source Time Series InSAR Methods for Deformation Monitoring over a Broader Mining Region. Remote Sens. 2020, 12, 1380. [Google Scholar] [CrossRef]
- Su, C.W.; Ding, K.L.; Zhou, M.D.; Liu, M. Subway Surface Subsidence Monitoring and Prediction Model Combined with Cubic Spline Interpolation Function. Bull. Surv. Map. 2015, 102, 160–162. [Google Scholar] [CrossRef]
- Ren, T.H.; Gong, W.P.; Gao, L.; Zhao, F.M.; Cheng, Z. An Interpretation Approach of Ascending–Descending SAR Data for Landslide Identification. Remote Sens. 2022, 14, 1299. [Google Scholar] [CrossRef]
- Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Preusse, A.; Hu, J.; Feng, G.C.; Papst, M. Time-Series 3-D Mining-Induced Large Displacement Modeling and Robust Estimation from a Single-Geometry SAR Amplitude Data Set. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3600–3610. [Google Scholar] [CrossRef]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Zhang, B.; Chang, L.; Stein, A. A Model-Backfeed Deformation Estimation Method for Revealing 20-Year Surface Dynamics of the Groningen Gas Field Using Multi-Platform SAR Imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102847. [Google Scholar] [CrossRef]
- Liu, X.Y.; Peng, X.Q.; Zhang, Y.Y.; Frauenfeld, O.W.; Wei, G.; Chen, G.Q.; Huang, Y.; Mu, C.C.; Du, J. Observed Retrogressive Thaw Slump Evolution in the Qilian Mountains. Remote Sens. 2024, 16, 2490. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Wang, M.M.; Wu, Z.J.; Liu, X.G. Permafrost Deformation Monitoring Along the Qinghai-Tibet Plateau Engineering Corridor Using InSAR Observations with Multi-Sensor SAR Datasets from 1997–2018. Sensors 2019, 19, 5306. [Google Scholar] [CrossRef]
- Li, R.X.; Li, Z.S.; Han, J.P.; Lu, P.; Qiao, G.; Meng, X.L.; Hao, T.; Zhou, F.J. Monitoring Surface Deformation of Permafrost in Wudaoliang Region, Qinghai–Tibet Plateau with ENVISAT ASAR Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102527. [Google Scholar] [CrossRef]
- Deng, H.M.; Zhang, Z.J.; Wu, Y. Accelerated Permafrost Degradation in Thermokarst Landforms in Qilian Mountains from 2007 to 2020 Observed by SBAS-InSAR. Ecol. Indic. 2024, 159, 111724. [Google Scholar] [CrossRef]
- Miner, K.R.; Turetsky, M.R.; Malina, E.; Bartsch, A.; Tamminen, J.; McGuire, A.D.; Fix, A.; Sweeney, C.; Elder, C.D.; Miller, C.E. Permafrost Carbon Emissions in a Changing Arctic. Nat. Rev. Earth Environ. 2022, 3, 55–67. [Google Scholar] [CrossRef]
- Li, D.S.; Wen, Z.; Cheng, Q.G.; Xing, A.G.; Zhang, M.L.; Li, A.Y. Thermal Dynamics of the Permafrost Active Layer under Increased Precipitation at the Qinghai-Tibet Plateau. J. Mt. Sci. 2019, 16, 309–322. [Google Scholar] [CrossRef]
- Wang, Q.F.; Jin, H.J.; Zhang, T.J.; Wu, Q.B.; Cao, B.; Peng, X.Q.; Wang, K.; Li, L.L. Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains. Chin. Sci. Bull. 2016, 61, 2742–2756. [Google Scholar] [CrossRef]
- Hinkel, K.M.; Nicholas, J.R.J. Active Layer Thaw Rate at a Boreal Forest Site in Central Alaska, U.S.A. Arct. Alp. Res. 1995, 27, 72–80. [Google Scholar] [CrossRef]
- Romanovsky, V.E.; Osterkamp, T.E. Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic. Permafrost Periglac. Process. 1997, 8, 1–22. [Google Scholar] [CrossRef]
- Zhao, L.; Cheng, G.D.; Li, S.X.; Wang, X.M.; Wang, Z.L. Thawing and frezzing processes of the active layer in Wudaoliang region of Tibetan Plateau. Chin. Sci. Bull. 2000, 45, 1205–1211. [Google Scholar] [CrossRef]
- Liu, S.B.; Zhao, L.; Wang, L.X.; Zhou, H.; Zou, D.F.; Sun, Z.; Xie, C.W.; Qiao, Y.P. Intra-Annual Ground Surface Deformation Detected by Site Observation, Simulation and InSAR Monitoring in Permafrost Site of Xidatan, Qinghai-Tibet Plateau. Geophys. Res. Lett. 2022, 49, e2021GL095029. [Google Scholar] [CrossRef]
- Daout, S.; Dini, B.; Haeberli, W.; Doin, M.-P.; Parsons, B. Ice Loss in the Northeastern Tibetan Plateau Permafrost as Seen by 16 Yr of ESA SAR Missions. Earth Planet. Sci. Lett. 2020, 545, 116404. [Google Scholar] [CrossRef]
Orbit Type | Path | Polarization | Data Mode | Azimuth Angle (°) | Incidence Angle (°) |
---|---|---|---|---|---|
Ascending | 26 | VV | IW | 100.2 | 38 |
Descending | 106 | VV | IW | −100.4 | 36 |
Data | Grid Size (m) | Time (Year) | Data Source |
---|---|---|---|
Fractional Vegetation Cover (FVC) | 250 | 2017–2023 | https://data.tpdc.ac.cn (accessed on 15 March 2024) |
Mean Annual Precipitation (MAP) | 1000 | 2017–2023 | CRU & WorldClim |
Mean Annual Atmospheric Temperature (MAAT) | 1000 | 2017–2023 | CRU & WorldClim |
Mean Annual Atmospheric Temperature_MIN (MAATMN) | 1000 | 2017–2023 | CRU & WorldClim |
Mean Annual Atmospheric Temperature_MAX (MAATMX) | 1000 | 2017–2023 | CRU & WorldClim |
Land Surface Temperature (LST) | 1000 | 2017–2023 | MODIS |
Evapotranspiration (ET) | 500 | 2017–2023 | MODIS |
Potential Evapotranspiration (PET) | 500 | 2017–2023 | MODIS |
Enhanced Vegetation Index (EVI) | 1000 | 2017–2023 | MODIS |
Normalized Difference Vegetation Index (NDVI) | 1000 | 2017–2023 | MODIS |
Gross Primary Production (GPP) | 500 | 2017–2023 | MODIS |
Net Primary Production (NPP) | 500 | 2017–2023 | MODIS |
Leaf Area Index (LAI) | 500 | 2017–2023 | MODIS |
Active Lager Thickness (ALT) | 1000 | 2017–2020 | MODIS |
Maximum Thickness of Seasonally Frozen Ground (MTSFG) | 1000 | 2017–2020 | https://data.tpdc.ac.cn (accessed on 15 March 2024) |
Surface Soil Moisture (SMsurf) | 6000 | 2017–2020 | GLEAM |
Rootzone Soil Moisture (SMroot) | 6000 | 2017–2020 | GLEAM |
Permafrost Zoning Index (PZI) | 250 | The last 50 years | https://data.tpdc.ac.cn (accessed on 15 March 2024) |
Human Activity Affection (HAA) | 30 | 2021 | https://data.tpdc.ac.cn (accessed on 15 March 2024) |
Permafrost Ground-ice content [2 m–3 m] (PGC23) | 1000 | The last 28 years | https://data.tpdc.ac.cn (accessed on 15 March 2024) |
Permafrost Ground-ice content [3 m–5 m] (PGC35) | 1000 | The last 28 years | https://data.tpdc.ac.cn (accessed on 15 March 2024) |
Permafrost Ground-ice content [5 m–10 m] (PGC510) | 1000 | The last 28 years | https://data.tpdc.ac.cn (accessed on 15 March 2024) |
Short Water Equivalent (SWE) | 3655 | 2017–2023 | https://data.tpdc.ac.cn (accessed on 15 March 2024) |
Snow Depth (SD) | 3655 | 2017–2023 | https://data.tpdc.ac.cn (accessed on 15 March 2024) |
Soil Freezing Duration (SFD) | 9000 | 2017–2022 | ERA5-LAND |
Land Cover | 30 | 2020 | GlobeLand30 |
Basic Geomorphologic type | 1000 | 2009 | https://data.tpdc.ac.cn (accessed on 15 March 2024) |
Slope | 30 | 2022 | DEM |
Aspect | 30 | 2022 | DEM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Zhao, S.; Zhang, B. Study on Soil Freeze–Thaw and Surface Deformation Patterns in the Qilian Mountains Alpine Permafrost Region Using SBAS-InSAR Technique. Remote Sens. 2024, 16, 4595. https://doi.org/10.3390/rs16234595
Xue Z, Zhao S, Zhang B. Study on Soil Freeze–Thaw and Surface Deformation Patterns in the Qilian Mountains Alpine Permafrost Region Using SBAS-InSAR Technique. Remote Sensing. 2024; 16(23):4595. https://doi.org/10.3390/rs16234595
Chicago/Turabian StyleXue, Zelong, Shangmin Zhao, and Bin Zhang. 2024. "Study on Soil Freeze–Thaw and Surface Deformation Patterns in the Qilian Mountains Alpine Permafrost Region Using SBAS-InSAR Technique" Remote Sensing 16, no. 23: 4595. https://doi.org/10.3390/rs16234595
APA StyleXue, Z., Zhao, S., & Zhang, B. (2024). Study on Soil Freeze–Thaw and Surface Deformation Patterns in the Qilian Mountains Alpine Permafrost Region Using SBAS-InSAR Technique. Remote Sensing, 16(23), 4595. https://doi.org/10.3390/rs16234595