The Number of Subgroup Chains of Finite Nilpotent Groups
Abstract
:1. Introduction
2. Preliminaries
3. The Number of Subgroup Chains of Nilpotent Groups
- (i)
- ;
- (ii)
- and ;
- (iii)
- .
4. The Number of Distinct Fuzzy Subgroups of Abelian Groups
- (1)
- , for all
- (2)
- , for any
5. Examples
Author Contributions
Funding
Conflicts of Interest
References
- Aigner, M. Combinatorial Theory; Springer: New York, NY, USA, 1979. [Google Scholar]
- Doerk, K.; Hawkes, T. Finite Solvable Groups; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1992. [Google Scholar]
- Huppert, B. Endliche Gruppen I; Springer: Berlin, Germany, 1967. [Google Scholar]
- Ştefǎnescu, M.; Tǎrnǎuceanu, M. Counting maximal chains of subgroups of finite nilpotent groups. Carpathian J. Math. 2009, 25, 119–127. [Google Scholar]
- Tărnăuceanu, M. The number of fuzzy subgroups of finite cyclic groups and Delannoy numbers. Eur. J. Comb. 2009, 30, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Tărnăuceanu, M. The number of chains of subgroups of a finite elementary abelian p-group. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 65–68. [Google Scholar]
- Caughman, J.S.; Haithcock, C.R.; Veerman, J.J.P. A note on lattice chains and Delannoy numbers. Discrete Math. 2008, 308, 2623–2628. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.M. The number of chains of subgroups of a finite cyclic group. Eur. J. Comb. 2012, 33, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Appiah, I.K.; Makamba, B.B. Counting distinct fuzzy subgroups of some rank-3 abelian groups. Iran. J. Fuzzy Syst. 2017, 14, 163–181. [Google Scholar]
- Murali, V.; Makamba, B.B. On an equivalence of fuzzy subgroups, II. Fuzzy Sets Syst. 2003, 136, 93–104. [Google Scholar] [CrossRef]
- Murali, V.; Makamba, B.B. Counting the number of fuzzy subgroups of an abelian group of order pnqm. Fuzzy Sets Syst. 2004, 144, 459–470. [Google Scholar] [CrossRef]
- Oh, J.M. An explicit formula for the number of fuzzy subgroups of a finite abelian p-group of rank two. Iran. J. Fuzzy Syst. 2013, 10, 125–135. [Google Scholar]
- Ngcibi, S.; Murali, V.; Makamba, B.B. Fuzzy subgroups of rank two abelian p-group. Iran. J. Fuzzy Syst. 2010, 7, 149–153. [Google Scholar]
- Tărnăuceanu, M.; Bentea, L. On the number of fuzzy subgroups of finite abelian groups. Fuzzy Sets Syst. 2008, 159, 1084–1096. [Google Scholar] [CrossRef]
- Volf, A.C. Fuzzy subgroups and chains of subgroups. FSAI 2004, 10, 87–98. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Guo, X. The Number of Subgroup Chains of Finite Nilpotent Groups. Symmetry 2020, 12, 1537. https://doi.org/10.3390/sym12091537
Han L, Guo X. The Number of Subgroup Chains of Finite Nilpotent Groups. Symmetry. 2020; 12(9):1537. https://doi.org/10.3390/sym12091537
Chicago/Turabian StyleHan, Lingling, and Xiuyun Guo. 2020. "The Number of Subgroup Chains of Finite Nilpotent Groups" Symmetry 12, no. 9: 1537. https://doi.org/10.3390/sym12091537
APA StyleHan, L., & Guo, X. (2020). The Number of Subgroup Chains of Finite Nilpotent Groups. Symmetry, 12(9), 1537. https://doi.org/10.3390/sym12091537