321

231

132

Rectified 321

birectified 321

Rectified 231

Rectified 132
Orthogonal projections in E7 Coxeter plane

In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.

Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node branch.

The rectified 231 is constructed by points at the mid-edges of the 231.

These polytopes are part of a family of 127 (or 27−1) convex uniform polytopes in 7-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .

2_31 polytope

edit
Gosset 231 polytope
Type Uniform 7-polytope
Family 2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol 231
Coxeter diagram            
6-faces 632:
56 221 
576 {35} 
5-faces 4788:
756 211 
4032 {34} 
4-faces 16128:
4032 201 
12096 {33} 
Cells 20160 {32} 
Faces 10080 {3} 
Edges 2016
Vertices 126
Vertex figure 131
 
Petrie polygon Octadecagon
Coxeter group E7, [33,2,1]
Properties convex

The 231 is composed of 126 vertices, 2016 edges, 10080 faces (Triangles), 20160 cells (tetrahedra), 16128 4-faces (3-simplexes), 4788 5-faces (756 pentacrosses, and 4032 5-simplexes), 632 6-faces (576 6-simplexes and 56 221). Its vertex figure is a 6-demicube. Its 126 vertices represent the root vectors of the simple Lie group E7.

This polytope is the vertex figure for a uniform tessellation of 7-dimensional space, 331.

Alternate names

edit
  • E. L. Elte named it V126 (for its 126 vertices) in his 1912 listing of semiregular polytopes.[1]
  • It was called 231 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence.
  • Pentacontihexa-pentacosiheptacontihexa-exon (Acronym laq) - 56-576 facetted polyexon (Jonathan Bowers)[2]

Construction

edit

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram,            .

Removing the node on the short branch leaves the 6-simplex. There are 576 of these facets. These facets are centered on the locations of the vertices of the 321 polytope,            .

Removing the node on the end of the 3-length branch leaves the 221. There are 56 of these facets. These facets are centered on the locations of the vertices of the 132 polytope,          .

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 6-demicube, 131,          .

Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders.[3]

E7             k-face fk f0 f1 f2 f3 f4 f5 f6 k-figures notes
D6             ( ) f0 126 32 240 640 160 480 60 192 12 32 6-demicube E7/D6 = 72x8!/32/6! = 126
A5A1             { } f1 2 2016 15 60 20 60 15 30 6 6 rectified 5-simplex E7/A5A1 = 72x8!/6!/2 = 2016
A3A2A1             {3} f2 3 3 10080 8 4 12 6 8 4 2 tetrahedral prism E7/A3A2A1 = 72x8!/4!/3!/2 = 10080
A3A2             {3,3} f3 4 6 4 20160 1 3 3 3 3 1 tetrahedron E7/A3A2 = 72x8!/4!/3! = 20160
A4A2             {3,3,3} f4 5 10 10 5 4032 * 3 0 3 0 {3} E7/A4A2 = 72x8!/5!/3! = 4032
A4A1             5 10 10 5 * 12096 1 2 2 1 Isosceles triangle E7/A4A1 = 72x8!/5!/2 = 12096
D5A1             {3,3,3,4} f5 10 40 80 80 16 16 756 * 2 0 { } E7/D5A1 = 72x8!/32/5! = 756
A5             {3,3,3,3} 6 15 20 15 0 6 * 4032 1 1 E7/A5 = 72x8!/6! = 72*8*7 = 4032
E6             {3,3,32,1} f6 27 216 720 1080 216 432 27 72 56 * ( ) E7/E6 = 72x8!/72x6! = 8*7 = 56
A6             {3,3,3,3,3} 7 21 35 35 0 21 0 7 * 576 E7/A6 = 72x8!/7! = 72×8 = 576

Images

edit
Coxeter plane projections
E7 E6 / F4 B6 / A6
 
[18]
 
[12]
 
[7x2]
A5 D7 / B6 D6 / B5
 
[6]
 
[12/2]
 
[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3
 
[8]
 
[6]
 
[4]
edit
2k1 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 =   = E8+ E10 =   = E8++
Coxeter
diagram
                                                                                         
Symmetry [3−1,2,1] [30,2,1] [[31,2,1]] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 384 51,840 2,903,040 696,729,600
Graph             - -
Name 2−1,1 201 211 221 231 241 251 261

Rectified 2_31 polytope

edit
Rectified 231 polytope
Type Uniform 7-polytope
Family 2k1 polytope
Schläfli symbol {3,3,33,1}
Coxeter symbol t1(231)
Coxeter diagram            
6-faces 758
5-faces 10332
4-faces 47880
Cells 100800
Faces 90720
Edges 30240
Vertices 2016
Vertex figure 6-demicube
Petrie polygon Octadecagon
Coxeter group E7, [33,2,1]
Properties convex

The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231.

Alternate names

edit
  • Rectified pentacontihexa-pentacosiheptacontihexa-exon - as a rectified 56-576 facetted polyexon (acronym rolaq) (Jonathan Bowers)[4]

Construction

edit

It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram,            .

Removing the node on the short branch leaves the rectified 6-simplex,            .

Removing the node on the end of the 2-length branch leaves the, 6-demicube,          .

Removing the node on the end of the 3-length branch leaves the rectified 221,          .

The vertex figure is determined by removing the ringed node and ringing the neighboring node.

         

Images

edit
Coxeter plane projections
E7 E6 / F4 B6 / A6
 
[18]
 
[12]
 
[7x2]
A5 D7 / B6 D6 / B5
 
[6]
 
[12/2]
 
[10]
D5 / B4 / A4 D4 / B3 / A2 / G2 D3 / B2 / A3
 
[8]
 
[6]
 
[4]

See also

edit

Notes

edit
  1. ^ Elte, 1912
  2. ^ Klitzing, (x3o3o3o *c3o3o3o - laq)
  3. ^ Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203
  4. ^ Klitzing, (o3x3o3o *c3o3o3o - rolaq)

References

edit
  • Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen
  • H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Klitzing, Richard. "7D uniform polytopes (polyexa)". x3o3o3o *c3o3o3o - laq, o3x3o3o *c3o3o3o - rolaq
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy