Guido Karl Heinrich Hoheisel (14 July 1894 – 11 October 1968) was a German mathematician and professor of mathematics at the University of Cologne.

Guido Hoheisel (1930)

Academic life

edit

He did his PhD in 1920 from the University of Berlin under the supervision of Erhard Schmidt.[1] During World War II Hoheisel was required to teach classes simultaneously at three universities, in Cologne, Bonn, and Münster.[2] His doctoral students include Arnold Schönhage.

Hoheisel contributed to the journal Deutsche Mathematik.

Selected results

edit

Hoheisel is known for a result on gaps between prime numbers:[3] He proved that if π(x) denotes the prime-counting function, then there exists a constant θ < 1 such that

π(x + xθ) − π(x) ~ xθ/log(x),

as x tends to infinity, implying that if pn denotes the n-th prime number then

pn+1pn < pnθ,

for all sufficiently large n. He showed that one may take

θ = 32999/33000 = 1 - 0.000(03),

with (03) denoting periodic repetition.

Selected works

edit
  • Gewöhnliche Differentialgleichungen 1926;[4] 2nd edition 1930;[5] 7th edition 1965
  • Partielle Differentialgleichungen 1928; 3rd edition 1953
  • Aufgabensammlung zu den gewöhnlichen und partiellen Differentialgleichungen 1933[6]
  • Integralgleichungen 1936;[7] revised and expanded 2nd edition 1963
  • Existenz von Eigenwerten und Vollständigkeitskriterium 1943
  • Integral equations translated by A. Mary Tropper [1968, c1967]

References

edit
  1. ^ Guido Hoheisel at the Mathematics Genealogy Project.
  2. ^ Segal, Sanford L. (2003), Mathematicians under the Nazis, Princeton University Press, p. 210, ISBN 978-0-691-00451-8.
  3. ^ G. Hoheisel, Primzahlprobleme in der Analysis, Berliner Sitzungsberichte, pages 580-588, (1930)
  4. ^ Cohen, A. (1929). "Review: Gewöhnliche Differentialgleichungen by G. Hoheisel" (PDF). Bull. Amer. Math. Soc. 35 (1): 136–137. doi:10.1090/s0002-9904-1929-04716-5.
  5. ^ Longley, W. R. (1932). "Review: Gewöhnliche Differentialgleichungen by G. Hoheisel" (PDF). Bull. Amer. Math. Soc. 38 (7): 478–479. doi:10.1090/s0002-9904-1932-05447-7.
  6. ^ Longley, W. R. (1933). "Review: Aufgabensammlung zu den gewöhnlichen und partiellen Differentialgleichungen by G. Hoheisel" (PDF). Bull. Amer. Math. Soc. 39 (9): 652–653. doi:10.1090/s0002-9904-1933-05695-1.
  7. ^ Longley, W. R. (1937). "Review: Integralgleichungen by G. Hoheisel" (PDF). Bull. Amer. Math. Soc. 43 (1): 14–15. doi:10.1090/s0002-9904-1937-06480-9.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy