The goal of S-estimators is to have a simple high-breakdown regression estimator, which share the flexibility and nice asymptotic properties of M-estimators. The name "S-estimators" was chosen as they are based on estimators of scale.

We will consider estimators of scale defined by a function , which satisfy

  • R1 – is symmetric, continuously differentiable and .
  • R2 – there exists such that is strictly increasing on

For any sample of real numbers, we define the scale estimate as the solution of

,

where is the expectation value of for a standard normal distribution. (If there are more solutions to the above equation, then we take the one with the smallest solution for s; if there is no solution, then we put .)

Definition:

Let be a sample of regression data with p-dimensional . For each vector , we obtain residuals by solving the equation of scale above, where satisfy R1 and R2. The S-estimator is defined by

and the final scale estimator is then

.[1]

References

edit
  1. ^ P. Rousseeuw and V. Yohai, Robust Regression by Means of S-estimators, from the book: Robust and nonlinear time series analysis, pages 256–272, 1984
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy