A tromino or triomino is a polyomino of size 3, that is, a polygon in the plane made of three equal-sized squares connected edge-to-edge.[1]

All possible free trominos

Symmetry and enumeration

edit

When rotations and reflections are not considered to be distinct shapes, there are only two different free trominoes: "I" and "L" (the "L" shape is also called "V").

Since both free trominoes have reflection symmetry, they are also the only two one-sided trominoes (trominoes with reflections considered distinct). When rotations are also considered distinct, there are six fixed trominoes: two I and four L shapes. They can be obtained by rotating the above forms by 90°, 180° and 270°.[2][3]

Rep-tiling and Golomb's tromino theorem

edit
 
Geometrical dissection of an L-tromino (rep-4)

Both types of tromino can be dissected into n2 smaller trominos of the same type, for any integer n > 1. That is, they are rep-tiles.[4] Continuing this dissection recursively leads to a tiling of the plane, which in many cases is an aperiodic tiling. In this context, the L-tromino is called a chair, and its tiling by recursive subdivision into four smaller L-trominos is called the chair tiling.[5]

Motivated by the mutilated chessboard problem, Solomon W. Golomb used this tiling as the basis for what has become known as Golomb's tromino theorem: if any square is removed from a 2n × 2n chessboard, the remaining board can be completely covered with L-trominoes. To prove this by mathematical induction, partition the board into a quarter-board of size 2n−1 × 2n−1 that contains the removed square, and a large tromino formed by the other three quarter-boards. The tromino can be recursively dissected into unit trominoes, and a dissection of the quarter-board with one square removed follows by the induction hypothesis. In contrast, when a chessboard of this size has one square removed, it is not always possible to cover the remaining squares by I-trominoes.[6]

See also

edit

Previous and next orders

edit

References

edit
  1. ^ Golomb, Solomon W. (1994). Polyominoes (2nd ed.). Princeton, New Jersey: Princeton University Press. ISBN 0-691-02444-8.
  2. ^ Weisstein, Eric W. "Triomino". MathWorld.
  3. ^ Redelmeier, D. Hugh (1981). "Counting polyominoes: yet another attack". Discrete Mathematics. 36: 191–203. doi:10.1016/0012-365X(81)90237-5.
  4. ^ Nițică, Viorel (2003), "Rep-tiles revisited", MASS selecta, Providence, RI: American Mathematical Society, pp. 205–217, MR 2027179.
  5. ^ Robinson, E. Arthur Jr. (1999). "On the table and the chair". Indagationes Mathematicae. 10 (4): 581–599. doi:10.1016/S0019-3577(00)87911-2. MR 1820555..
  6. ^ Golomb, S. W. (1954). "Checker boards and polyominoes". American Mathematical Monthly. 61: 675–682. doi:10.2307/2307321. MR 0067055..
edit
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy