Jump to content

Cox process

From Wikipedia, the free encyclopedia

In probability theory, a Cox process, also known as a doubly stochastic Poisson process is a point process which is a generalization of a Poisson process where the intensity that varies across the underlying mathematical space (often space or time) is itself a stochastic process. The process is named after the statistician David Cox, who first published the model in 1955.[1]

Cox processes are used to generate simulations of spike trains (the sequence of action potentials generated by a neuron),[2] and also in financial mathematics where they produce a "useful framework for modeling prices of financial instruments in which credit risk is a significant factor."[3]

Definition

[edit]

Let be a random measure.

A random measure is called a Cox process directed by , if is a Poisson process with intensity measure .

Here, is the conditional distribution of , given .

Laplace transform

[edit]

If is a Cox process directed by , then has the Laplace transform

for any positive, measurable function .

See also

[edit]

References

[edit]
Notes
  1. ^ Cox, D. R. (1955). "Some Statistical Methods Connected with Series of Events". Journal of the Royal Statistical Society. 17 (2): 129–164. doi:10.1111/j.2517-6161.1955.tb00188.x.
  2. ^ Krumin, M.; Shoham, S. (2009). "Generation of Spike Trains with Controlled Auto- and Cross-Correlation Functions". Neural Computation. 21 (6): 1642–1664. doi:10.1162/neco.2009.08-08-847. PMID 19191596.
  3. ^ Lando, David (1998). "On cox processes and credit risky securities". Review of Derivatives Research. 2 (2–3): 99–120. doi:10.1007/BF01531332.
Bibliography


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy