Jump to content

Duffing map

From Wikipedia, the free encyclopedia
Plot of the Duffing map showing chaotic behavior, where a = 2.75 and b = 0.15.
Phase portrait of a two-well Duffing oscillator (a differential equation, rather than a map) showing chaotic behavior.

The Duffing map (also called as 'Holmes map') is a discrete-time dynamical system. It is an example of a dynamical system that exhibits chaotic behavior. The Duffing map takes a point (xnyn) in the plane and maps it to a new point given by

The map depends on the two constants a and b. These are usually set to a = 2.75 and b = 0.2 to produce chaotic behaviour. It is a discrete version of the Duffing equation.

References

[edit]
[edit]


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy