Jump to content

Furstenberg boundary

From Wikipedia, the free encyclopedia

In potential theory, a discipline within applied mathematics, the Furstenberg boundary is a notion of boundary associated with a group. It is named for Harry Furstenberg, who introduced it in a series of papers beginning in 1963 (in the case of semisimple Lie groups). The Furstenberg boundary, roughly speaking, is a universal moduli space for the Poisson integral, expressing a harmonic function on a group in terms of its boundary values.

Motivation

[edit]

A model for the Furstenberg boundary is the hyperbolic disc . The classical Poisson formula for a bounded harmonic function on the disc has the form

where P is the Poisson kernel. Any function f on the disc determines a function on the group of Möbius transformations of the disc by setting F(g) = f(g(0)). Then the Poisson formula has the form

where m is the Haar measure on the boundary. This function is then harmonic in the sense that it satisfies the mean-value property with respect to a measure on the Möbius group induced from the usual Lebesgue measure of the disc, suitably normalized. The association of a bounded harmonic function to an (essentially) bounded function on the boundary is one-to-one.

Construction for semi-simple groups

[edit]

In general, let G be a semi-simple Lie group and μ a probability measure on G that is absolutely continuous. A function f on G is μ-harmonic if it satisfies the mean value property with respect to the measure μ:

There is then a compact space Π, with a G action and measure ν, such that any bounded harmonic function on G is given by

for some bounded function on Π.

The space Π and measure ν depend on the measure μ (and so, what precisely constitutes a harmonic function). However, it turns out that although there are many possibilities for the measure ν (which always depends genuinely on μ), there are only a finite number of spaces Π (up to isomorphism): these are homogeneous spaces of G that are quotients of G by some parabolic subgroup, which can be described completely in terms of root data and a given Iwasawa decomposition. Moreover, there is a maximal such space, with quotient maps going down to all of the other spaces, that is called the Furstenberg boundary.

References

[edit]
  • Borel, Armand; Ji, Lizhen, Compactifications of symmetric and locally symmetric spaces (PDF)
  • Furstenberg, Harry (1963), "A Poisson Formula for Semi-Simple Lie Groups", Annals of Mathematics, 77 (2): 335–386, doi:10.2307/1970220, JSTOR 1970220
  • Furstenberg, Harry (1973), Calvin Moore (ed.), "Boundary theory and stochastic processes on homogeneous spaces", Proceedings of Symposia in Pure Mathematics, 26, AMS: 193–232, doi:10.1090/pspum/026/0352328, ISBN 9780821814260
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy