Jump to content

Gelfand–Kirillov dimension

From Wikipedia, the free encyclopedia

In algebra, the Gelfand–Kirillov dimension (or GK dimension) of a right module M over a k-algebra A is:

where the supremum is taken over all finite-dimensional subspaces and .

An algebra is said to have polynomial growth if its Gelfand–Kirillov dimension is finite.

Basic facts

[edit]

In the theory of D-Modules

[edit]

Given a right module M over the Weyl algebra , the Gelfand–Kirillov dimension of M over the Weyl algebra coincides with the dimension of M, which is by definition the degree of the Hilbert polynomial of M. This enables to prove additivity in short exact sequences for the Gelfand–Kirillov dimension and finally to prove Bernstein's inequality, which states that the dimension of M must be at least n. This leads to the definition of holonomic D-modules as those with the minimal dimension n, and these modules play a great role in the geometric Langlands program.

Notes

[edit]
  1. ^ Artin 1999, Theorem VI.2.1.

References

[edit]
  • Smith, S. Paul; Zhang, James J. (1998). "A remark on Gelfand–Kirillov dimension" (PDF). Proceedings of the American Mathematical Society. 126 (2): 349–352. doi:10.1090/S0002-9939-98-04074-X.
  • Coutinho: A primer of algebraic D-modules. Cambridge, 1995

Further reading

[edit]


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy