Jump to content

Kolmogorov integral

From Wikipedia, the free encyclopedia

In mathematics, the Kolmogorov integral (or Kolmogoroff integral) is a generalized integral introduced by Kolmogoroff (1930) including the Lebesgue–Stieltjes integral, the Burkill integral, and the Hellinger integral as special cases. The integral is a limit over a directed family of partitions, when the resulting limiting value is independent of the tags of each partition segment.

References

[edit]
  • "On integration in Banach spaces, VI", Ivan Dobrakov and Pedro Morales, Czechoslovak Mathematical Journal, 35 (1985), #2, 173-187, doi:10.21136/CMJ.1985.102009, MR787123.
  • "On integration in Banach spaces, VII", Ivan Dobrakov, Czechoslovak Mathematical Journal, 38 (1988), #3, 434-449, doi:10.21136/CMJ.1988.102239, MR950297.
  • Kolmogoroff, A. (1930), "Untersuchungen über den Integralbegriff", Mathematische Annalen, 103 (1): 654–696, doi:10.1007/BF01455714, ISSN 0025-5831
  • Skvortsov, V. A. (2001) [1994], "Kolmogorov integral", Encyclopedia of Mathematics, EMS Press
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy