Jump to content

Yves André

From Wikipedia, the free encyclopedia
Yves André
André at Oberwolfach, 2007
Born (1959-12-11) December 11, 1959 (age 65)
NationalityFrench
Alma materPierre and Marie Curie University
AwardsPrix Paul Doistau–Émile Blutet (2011)
Member of the Academia Europaea (2015)
Scientific career
Doctoral advisorDaniel Bertrand

Yves André (born December 11, 1959) is a French mathematician, specializing in arithmetic geometry.

Biography

[edit]

André received his doctorate in 1984 from Pierre and Marie Curie University (Paris VI) with thesis advisor Daniel Bertrand and thesis Structure de Hodge, équations différentielles p-adiques, et indépendance algébrique de périodes d'intégrales abéliennes.[1] He became at CNRS in 1985 a Researcher, in 2000 a Research Director 2nd Class, and in 2009 a Research Director 1st Class (at École Normale Supérieure and Institut de mathématiques de Jussieu – Paris Rive Gauche).[2]

Research

[edit]

In 1989, he formulated the one-dimensional-subvariety case of what is now known as the André-Oort conjecture on special subvarieties of Shimura varieties.[3] Only partial results have been proven so far; by André himself and by Jonathan Pila in 2009. In 2016, André used Scholze's method of perfectoid spaces to prove Melvin Hochster's direct summand conjecture that any finite extension of a regular commutative ring splits as a module.[4][5]

Awards

[edit]

In 2011, André received the Prix Paul Doistau–Émile Blutet of the Académie des Sciences. In 2015, he was elected as a Member of the Academia Europaea. He was an invited speaker at the 2018 International Congress of Mathematicians in Rio de Janeiro and gave a talk titled Perfectoid spaces and the homological conjectures.[6]

Selected publications

[edit]
  • André, Yves (1989). G-Functions and Geometry A Publication of the Max-Planck-Institut für Mathematik, Bonn. Wiesbaden. ISBN 978-3-663-14108-2. OCLC 860266118.{{cite book}}: CS1 maint: location missing publisher (link)
  • André, Yves (18 October 2022). "Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part". Compositio Mathematica (in French). 82 (1): 1–24. ISSN 1570-5846. Retrieved 22 November 2022.
  • Andre, Yves (1996). "On the Shafarevich and Tate conjectures for hyperkähler varieties". Mathematische Annalen. 305 (1). Springer Science and Business Media LLC: 205–248. doi:10.1007/bf01444219. ISSN 0025-5831. S2CID 122949797.
  • André, Yves; Baldassarri, F. (2001). De Rham cohomology of differential modules on algebraic varieties. Basel, Switzerland: Birkhäuser. ISBN 978-3-0348-8336-8. OCLC 679321692.
  • Period mappings and differential equations. From C to Cp: Tohoku-Hokkaido Lectures in Arithmetic Geometry, Tokyo, Memoirs Mathematical Society of Japan 2003 (with appendix by F. Kato, N. Tsuzuki)
  • "Une introduction aux motifs (Motifs purs, motifs mixtes, périodes)". Société Mathématique de France (in French). Retrieved 22 November 2022.
  • André, Yves (2009). "Galois theory, motives and transcendental numbers". Renormalization and Galois Theories. IRMA Lectures in Mathematics and Theoretical Physics. Vol. 15. Zuerich, Switzerland: European Mathematical Society Publishing House. pp. 165–177. doi:10.4171/073-1/4. ISBN 978-3-03719-073-9. S2CID 16880343.
  • André, Yves (7 December 2017). "La conjecture du facteur direct". Publications mathématiques de l'IHÉS (in French). 127 (1). Springer Science and Business Media LLC: 71–93. arXiv:1609.00345. doi:10.1007/s10240-017-0097-9. ISSN 0073-8301. S2CID 254170253.

References

[edit]
  1. ^ Yves André at the Mathematics Genealogy Project
  2. ^ "Yves André". Academia Europaea.
  3. ^ "G-functions and geometry", Vieweg 1989
  4. ^ André, Yves (2016). "La conjecture du facteur direct". arXiv:1609.00345 [math.AG].
  5. ^ Bhatt, Bhargav (2016). "On the direct summand conjecture and its derived variant". arXiv:1608.08882 [math.AG]..
  6. ^ André, Yves (2018). "Perfectoid spaces and the homological conjectures". arXiv:1801.10006 [math.AC].
[edit]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy