Aller au contenu

Google DeepMind

Un article de Wikipédia, l'encyclopédie libre.

Google DeepMind
logo de Google DeepMind
Logo de Google DeepMind.
illustration de Google DeepMind
Siège social à Kings Cross, Londres

Création 2010[1]
Fondateurs Demis Hassabis, Shane Legg, et Mustafa Suleyman
Forme juridique FilialeVoir et modifier les données sur Wikidata
Siège social 5 New Street Square,
Londres[2]
Drapeau de la Grande-Bretagne Royaume-Uni
Actionnaires Google (-)
Alphabet Inc. (depuis )Voir et modifier les données sur Wikidata
Activité Intelligence artificielle
Produits AlphaGo, AlphaFold, AlphaGo Zero et Google GeminiVoir et modifier les données sur Wikidata
Société mère Google
Effectif 700 (estimation 2017)[3]
Site web deepmind.com

Google DeepMind est une entreprise spécialisée dans l'intelligence artificielle appartenant à Google. L'entreprise est remarquée notamment pour son programme de jeu de Go AlphaGo, et son logiciel AlphaFold, qui permet de prédire la structure des protéines à partir de leurs séquences en acides aminés.

Originellement appelée DeepMind Technologies Limited et fondée en 2010 par Demis Hassabis, Mustafa Suleyman et Shane Legg[4], elle est rachetée le 26 janvier 2014, par Google pour plus de 628 millions de dollars américains[5],[6].

Le 20 avril 2023, la section "Brain" de Google Research et Deepmind fusionnent pour devenir Google Deepmind[7].

L’objectif de DeepMind est de « résoudre l'intelligence ». Pour atteindre ce but, l'entreprise essaie de combiner « les meilleures techniques de l'apprentissage automatique et des neurosciences des systèmes pour construire de puissants algorithmes d'apprentissage généraliste ». L'entreprise souhaite non seulement doter les machines d'intelligence artificielle performante, mais aussi comprendre le fonctionnement du cerveau humain. Demis Hassabis explique :

« Tenter de distiller l'intelligence dans une construction algorithmique peut s’avérer être le meilleur chemin pour comprendre le fonctionnement de nos esprits. »

— Demis Hassabis, Nature, 23 février 2012.

L'entreprise se concentre sur le développement de systèmes informatiques capables de jouer à des jeux tels que le go ou des jeux d'arcade. Selon Shane Legg une machine à l’intelligence comparable à l'intelligence humaine peut être réalisée « lorsqu’une machine peut apprendre à jouer à une très large gamme de jeux à partir de flux perceptuels d’entrée et de sortie, et d’utiliser la compréhension acquise entre les jeux [...]. » La présentation d’une intelligence artificielle capable d’apprendre à jouer à sept jeux différents sur Atari 2600 (Pong, Breakout, Space Invaders, Seaquest, Beamrider, Enduro, et Q*bert) aurait motivé leur acquisition par Google.

Une nouvelle publication dans la revue Nature de février 2015[8] montre les progrès réalisés par DeepMind. Le logiciel est maintenant meilleur qu’un expert humain des jeux vidéo pour 22 titres classiques d’Atari sur 49 testés mais reste inférieur aux performances humaines dans 20 autres jeux, et ne dépasse pas un joueur humain pour les titres restants. La principale limitation du logiciel est qu’il reste pour l’instant incapable de planifier de longues stratégies dans le temps (plus de 15 secondes)[5].

Machine de Turing neuronale

[modifier | modifier le code]

Un des défis que tente de relever DeepMind est de réaliser une mémoire à court terme similaire à celle travaillant dans le cerveau humain. Le système développé est un type de réseau de neurones qui a été adapté pour fonctionner avec une mémoire externe. Le résultat est un ordinateur qui apprend en stockant des souvenirs et en les réutilisant pour effectuer des tâches logiques qu’il ne saurait faire autrement[9]. Comme cette forme de calcul diffère de manière importante d'un réseau neuronal classique, DeepMind lui a donné un nouveau nom : une machine de Turing neuronale[10]. La machine de Turing neuronale apprend comme un réseau neuronal classique en utilisant les entrées qu'il reçoit du monde extérieur mais il apprend aussi à stocker ces informations et à les récupérer.

Deep reinforcement learning

[modifier | modifier le code]

DeepMind combine la technique d’apprentissage automatique « Deep Learning » avec une technique appelée l'apprentissage par renforcement, qui est inspirée par les travaux de psychologues tels que B. F. Skinner notamment sur le conditionnement opérant. La technique est nommée « Deep reinforcement learning ». Le logiciel apprend en effectuant des actions et en observant les effets et conséquences, de la même manière que les humains ou les animaux. Mais jusqu'à la publication de DeepMind, personne n’avait réussi à construire un système capable de réaliser des actions aussi complexes que jouer à un jeu vidéo. Une partie du processus d'apprentissage consiste à analyser les expériences passées à plusieurs reprises pour tenter d’extraire des informations plus précises pour agir plus efficacement à l'avenir. Ce mécanisme est très proche de ceux qui ont lieu dans le cerveau humain. Quand nous dormons l’hippocampe rejoue la mémoire de la journée à notre cortex[11].

Première victoire contre un joueur professionnel de go

[modifier | modifier le code]

Le jeu de go est considéré comme un des plus difficiles à appréhender pour une intelligence artificielle de par la multiplicité des positions et des placements possibles sur le goban. Le programme AlphaGo mis au point par DeepMind combine l'algorithme Monte-Carlo et les réseaux de neurones, une méthode qui bat les autres programmes de go dans 99,8 % des cas[12].

En octobre 2015, l'algorithme AlphaGo de DeepMind a battu le champion européen en titre de go, Fan Hui, par cinq victoires à zéro, première victoire d'un ordinateur contre un joueur professionnel[13],[14]. Pour mieux comprendre l'importance de cet exploit informatique, voir l'article Jeu de go en informatique.

En mars 2016, AlphaGo gagne contre l'un des meilleurs joueurs du monde Lee Sedol (score 4-1)[15], et bat le champion du monde Ke Jie en mai 2017.

Raisonnement relationnel

[modifier | modifier le code]

Dans deux études parues début juin 2017, les chercheurs de Deepmind détaillent leurs efforts pour développer des agents dotés de capacité de raisonnement relationnel[16] et prédictif[17] ; deux facultés fondatrices de l’intelligence humaines.

Les deux systèmes sont basés sur des méthodes existantes d’apprentissage machine. Le premier est capable d’apprendre à reconnaître des relations spatiales entre des objets et le second parvient à produire des prédictions de mouvement d’objets se déplaçant dans un environnement en deux dimensions. Il s’agit d’un « moteur physique intuitif ».

Leurs résultats sont nettement meilleurs que tout ce qui a été réalisé auparavant, dépassant même les performances humaines dans certains cas[18],[16].

Si les travaux ont été salués par certains chercheurs comme un pas dans la bonne direction. Certains, dont Sam Gershman, professeur de psychologie à Harvard, se montrent plus critiques et mettent en garde contre une surestimation de l'importance des travaux produits par DeepMind. Leur argument est qu’obtenir des performances surhumaines pour chacune des tâches séparées ne permettra pas d’obtenir une intelligence générale surhumaine[18],[19].

Domaine médical

[modifier | modifier le code]

En février 2016, Google DeepMind a signé un partenariat avec le National Health Service (NHS), qui gère les dossiers médicaux de 1,6 million de patients de trois hôpitaux de Londres, afin de développer une application, nommée Streams, aidant les médecins à surveiller les patients ayant des problèmes de reins. Streams est censé éplucher les données en temps réel pour aider le personnel hospitalier à détecter le plus rapidement possible les cas d’insuffisance rénale aiguë, une pathologie qui évolue extrêmement vite et pouvant s’avérer mortelle si elle n’est pas prise en charge assez tôt. Toutefois, une polémique a été déclenchée quand il s'est avéré que ce ne sont pas seulement les dossiers des malades des reins qui ont été transmis à l’entreprise, mais ceux de tous les patients, et ces fichiers contiennent des données ultrasensibles remontant jusqu’à cinq ans : résultats d’examens, indications d’overdose, avortements, VIH, mais aussi des rapports quotidiens de l'hôpital sur l’activité du patient, son emplacement ou encore ses visiteurs ; tout ceci sans que les patients en soient informés[20].

Prédiction de la structure des protéines

[modifier | modifier le code]

AlphaFold est un programme d'intelligence artificielle (IA) développé par DeepMind de Google qui cherche à prédire la structure des protéines à partir de leur séquence en acides aminés. Le programme est conçu comme un système d'apprentissage profond[21]. La deuxième version du logiciel a atteint en novembre 2020[22],[23] un niveau de précision exceptionnel[21],[24]. AlphaFold 2 a été décrit dans un article publié dans Nature le 15 juillet 2021[25]. Le logiciel est libre, de même qu'une base de données regroupant les structures de la plupart des protéines de plusieurs espèces[26], dont 20 000 protéines humaines[27],[28].

Références

[modifier | modifier le code]
  1. (en) About us sur deepmind.com.
  2. (en) Volodymyr Mnih, Koray Kavukcuoglu et David Silver, « Human-level control through deep reinforcement learning », Nature, vol. 518,‎ (DOI 10.1038/nature14236, lire en ligne).
  3. (en) Sam Shead, « DeepMind's CEO told Prince Harry his AI lab now employs 700 staff: 'It’s really the biggest collection of brain power anywhere in the world on this topic' », Business Insider,‎ (lire en ligne)
  4. (en) Amy Thomson, « Google Buys U.K. Artificial Intelligence Company DeepMind », sur Bloomberg.com (consulté le ).
  5. a et b (en) « Google's AI Masters Space Invaders », sur technologyreview.com, (consulté le ).
  6. (en) « Google buys UK artificial intelligence startup Deepmind for £400m », sur the Guardian, (consulté le ).
  7. (en) « Announcing Google DeepMind », sur deepmind.com (consulté le ).
  8. (en) « Human-level control through deep reinforcement learning », sur nature.com, (consulté le ).
  9. (en) « Facebook AI Director Yann LeCun on His Quest to Unleash Deep Learning and Make Machines Smarter », sur spectrum.ieee.org, (consulté le ).
  10. (en) « Google's Secretive DeepMind Startup Unveils a "Neural Turing Machine" », sur technologyreview.com, (consulté le ).
  11. (en) « Google’s Intelligence Designer », sur technologyreview.com, (consulté le ).
  12. (en) « Mastering the game of Go with deep neural networks and tree search », Nature, no 529,‎ (DOI 10.1038/nature16961, lire en ligne, consulté le ).
  13. « Première défaite d’un professionnel du go contre une intelligence artificielle », https://www.lemonde.fr, 27 janvier 2016.
  14. David Larousserie et Morgane Tual, « Fan Hui, champion européen de go : « L’ordinateur joue comme un humain » », sur lemonde.fr, (consulté le ).
  15. Jeu de go: l'ordinateur AlphaGo distingué.
  16. a et b Adam Santoro, David Raposo, David G. T. Barrett et Mateusz Malinowski, « A simple neural network module for relational reasoning », arXiv:1706.01427 [cs],‎ (lire en ligne, consulté le ).
  17. Nicholas Watters, Andrea Tacchetti, Theophane Weber et Razvan Pascanu, « Visual Interaction Networks », arXiv:1706.01433 [cs],‎ (lire en ligne, consulté le ).
  18. a et b (en) Will Knight, « Forget AlphaGo, DeepMind has a more interesting step toward general AI », MIT Technology Review,‎ (lire en ligne, consulté le ).
  19. Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum et Samuel J. Gershman, « Building Machines That Learn and Think Like People », Behavioral and Brain Sciences,‎ , p. 1–101 (ISSN 0140-525X et 1469-1825, DOI 10.1017/S0140525X16001837, lire en ligne, consulté le ).
  20. L’ampleur des données de santé collectées par Google inquiète outre-Manche, lemonde.fr, article daté du 14 mai 2016.
  21. a et b (en) « DeepMind’s protein-folding AI has solved a 50-year-old grand challenge of biology », sur MIT Technology Review (consulté le ).
  22. (en) « DeepMind’s AI makes gigantic leap in solving protein structures », sur Nature, (consulté le ).
  23. (en) Sam Shead, « DeepMind solves 50-year-old ‘grand challenge’ with protein folding A.I. », sur CNBC, (consulté le ).
  24. (en) Ewen Callaway, « ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures », Nature, vol. 588, no 7837,‎ , p. 203–204 (DOI 10.1038/d41586-020-03348-4, lire en ligne, consulté le )
  25. (en) Ewen Callaway, « DeepMind’s AI predicts structures for a vast trove of proteins », Nature, vol. 595, no 7869,‎ , p. 635–635 (DOI 10.1038/d41586-021-02025-4, lire en ligne, consulté le )
  26. « AlphaFold Protein Structure Database », sur alphafold.ebi.ac.uk (consulté le ).
  27. (en) « AI firm DeepMind puts database of the building blocks of life online », sur the Guardian, (consulté le ).
  28. (en-GB) « AI breakthrough could spark medical revolution », BBC News,‎ (lire en ligne, consulté le )

Liens externes

[modifier | modifier le code]

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy