Aller au contenu

Noyau de Szegő

Un article de Wikipédia, l'encyclopédie libre.

Dans l'étude mathématique des fonctions de plusieurs variables complexes, le noyau de Szegő est un noyau intégral qui donne naissance à un noyau de reproduction sur un espace de Hilbert naturel de fonctions holomorphes. Il doit son nom à son découvreur, le mathématicien hongrois Gábor Szegő .

Soit Ω un domaine borné de Cn, avec une frontière C2, et soit A(Ω) l'ensemble des fonctions holomorphes dans Ω qui sont continues sur Ω. Définissons l'espace de Hardy H2(∂Ω) comme la fermeture, dans L2(∂Ω) des restrictions des éléments de A(Ω) à la frontière. L'intégrale de Poisson implique que chaque élément ƒ de H2(∂Ω) s'étend en une fonction holomorphe P ƒ dans Ω. De plus, pour chaque z ∈ Ω, l'application

définit une forme linéaire continue sur H2(∂Ω). Par le théorème de représentation de Riesz, cette forme linéaire est représentée par un noyau kz, c'est-à-dire

Le noyau de Szegő est défini par

Comme son cousin voisin, le noyau de Bergman, le noyau de Szegő est holomorphe en z. En fait, si φi est une base orthonormée de H2(∂Ω) constituée entièrement des restrictions de fonctions dans A(Ω), alors une application du théorème de Riesz-Fischer montre que

Notes et références

[modifier | modifier le code]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy