Aller au contenu

Polynôme de Gegenbauer

Un article de Wikipédia, l'encyclopédie libre.
Tracé du polynôme de Gegenbauer C(m)
n
(x)
pour n=10 et m=1 sur le plan complexe entre -2-2i et 2+2i

En mathématiques, les polynômes de Gegenbauer ou polynômes ultrasphériques sont une classe de polynômes orthogonaux. Ils sont nommés ainsi en l'honneur de Leopold Gegenbauer (1849-1903). Ils sont obtenus à partir des séries hypergéométriques dans les cas où la série est en fait finie :

n est la factorielle décroissante[1].

Propriétés

[modifier | modifier le code]
Orthogonalité

Les polynômes de Gegenbauer sont orthogonaux sur [-1 ; 1] pour le poids w(x) = (1–x2)α–1/2 :

Récurrence

Les polynômes de Gegenbauer peuvent être construits par la relation de récurrence :

Liens avec d'autres suites de polynômes orthogonaux

Les polynômes de Gegenbauer sont solutions de l'équation différentielle :

On peut alors remarquer que pour α = 1/2, l'équation se ramène à celle satisfaite par les polynômes de Legendre, et pour α = 1, on retrouve celle des polynômes de Tchebychev de seconde espèce.

Applications

[modifier | modifier le code]

Les polynômes de Gegenbauer apparaissent comme des prolongements des polynômes de Legendre dans la théorie du potentiel pour les dimensions supérieures à 1.

Notes et références

[modifier | modifier le code]
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Gegenbauer polynomials » (voir la liste des auteurs).
  1. Voir (en) Milton Abramowitz et Irene Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [détail de l’édition] (lire en ligne), p. 561.

Liens externes

[modifier | modifier le code]

(en) Eric W. Weisstein, « Gegenbauer Polynomial », sur MathWorld

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy